精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{sinx,x≥1}\\{{e}^{x},x<1}\end{array}\right.$.
(1)若f(x)≥1,求x的取值范围;
(2)求函数f(x)的值域.

分析 (1)讨论当x≥1时,sinx=1,解得x=2kπ+$\frac{π}{2}$,k∈N;再由x<1时,解不等式ex≥1,即可得到所求x的取值范围;
(2)分别讨论x≥1时,x<1时,结合正弦函数和指数函数的值域,即可得到所求f(x)的值域.

解答 解:(1)当x≥1时,sinx≥1,
但sinx≤1,即有sinx=1,
解得x=2kπ+$\frac{π}{2}$,k∈Z,即为x=2kπ+$\frac{π}{2}$,k∈N;
当x<1时,ex≥1,可得x≥0,即为0≤x<1.
综上可得x的取值范围是[0,1)∪{x|x=2kπ+$\frac{π}{2}$,k∈N};
(2)当x≥1时,f(x)=sinx∈[-1,1];
当x<1时,f(x)=ex∈(0,e).
可得f(x)的值域为[-1,1]∪(0,e)=[-1,e).

点评 本题考查分段函数的运用:解不等式和求函数的值域,注意运用三角函数的值域和指数函数的值域和单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求经过点B($\frac{π}{3}$,$\frac{1}{2}$)且与曲线y=cosx相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,长方体ABCD-A′B′C′D′中,化简下列各式,并在图中标出化简得到的向量:
(1)$\overrightarrow{AA′}$-$\overrightarrow{CB}$;
(2)$\overrightarrow{AB′}$+$\overrightarrow{B′C′}$+$\overrightarrow{C′D′}$;
(3)$\frac{1}{2}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{A′A}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax2,且函数f(x)在点(2,f(2))处的切线的一个方向向量是(2,-3).
(1)若关于x的方程f(x)+$\frac{3}{2}$x2=3x-b在区间[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数b的取值范围;
(2)证明:$\sum_{k=2}^{n}$$\frac{1}{\frac{1}{2}{k}^{2}+f(k)}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$(n∈N,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列圆的方程:
(1)已知点A(-4,-5),B(6,-1),以线段AB为直径的圆的方程.
(2)过两点C(-1,1)和D(1,3),圆心在x轴上的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对空间任一点O和不共线三点A,B,C,能得到P,A,B,C四点共面的是(  )
A.$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$B.$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$
C.$\overrightarrow{OP}$=-$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$D.以上皆错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={y|y=2x,x∈R},N={x|y=loga(x+1),a>0,a≠1},则M和N的关系是(  )
A.M?NB.M?NC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-4x+4.
(1)求f(x)在x=1处的切线方程;
(2)求f(x)在[-3,6]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦点分别为F1(-1,0),F2(1,0),且过点$(-1,\frac{3}{2})$,右顶点为A,经过点F2的动直线l与椭圆交于B,C两点.
(1)求椭圆方程;
(2)记△AOB和△AOC的面积分别为S1和S2,求|S1-S2|的最大值;
(3)在x轴上是否存在一点T,使得点B关于x轴的对称点落在直线TC上?若存在,则求出T点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案