精英家教网 > 高中数学 > 题目详情
17.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率$e=\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过左焦点F1且倾斜角为$\frac{π}{4}$的直线l与椭圆交于A、B两点,求|AB|的值.

分析 (Ⅰ)由题意设出椭圆方程,结合已知列式求得a,b的值,则椭圆方程可求;
(Ⅱ)写出直线l的方程,与椭圆方程联立,利用根与系数的关系求出两交点的横坐标的和与积,代入弦长公式得答案.

解答 解:(I)由题意设椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
由已知得:a+c=3,$e=\frac{c}{a}=\frac{1}{2}$,解得a=2,c=1,∴b2=a2-c2=3,
∴椭圆的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(Ⅱ)由已知得直线l的方程为y=x+1,
与椭圆方程联立,可得7x2+8x-8=0,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{8}{7}$,x1x2=-$\frac{8}{7}$,
∴|AB|=$\sqrt{2}$|x1-x2|=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{8}{7})^{2}-4•(-\frac{8}{7})}=\frac{24}{7}$.

点评 本题考查椭圆的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.平面直角坐标系中,若点$({a-1\;,\;\;\frac{3a+1}{a-1}})$在第三象限内,则实数a的取值范围是$(-\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若 M={1,2,4,5},N={2,3,4,6},则M∩N=(  )
A.{2,3}B.{2}C.{1,3,4}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在函数$f(x)=\frac{1}{3}{x^3}-2{x^2}+ax({a∈R})$的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)在任一点处的切线倾斜角为α,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)是定义在R上的奇函数,满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=2x-2,则f(log${\;}_{\frac{1}{2}}$24)的值等于(  )
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{2-i}{1+i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$在复平面上所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥C-ABDE中,F为CD的中点,BD⊥平面ABC,BD∥AE且BD=2AE.
(1)求证:EF∥平面ABC;
(2)已知AB=BC=CA=BD=2,求平面ECD与平面ABC所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在圆x2+y2=4上任取一点P,过P作x轴的垂线段,D为垂足,当点P在圆上运动时,记线段PD中点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设$A({-\sqrt{3},0}),B({\sqrt{3},0})$,试判断(并说明理由)轨迹C上是否存在点Q,使得$\overrightarrow{AQ}•\overrightarrow{BQ}=0$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数中,表示同一个函数的是(  )
A.y=1,y=$\frac{x}{x}$B.y=$\sqrt{x-2}$•$\sqrt{x+2}$,y=$\sqrt{{x}^{2}-4}$
C.y=x与y=logaax(a>0且a≠1)D.y=|x|,$y={({\sqrt{x}})^2}$

查看答案和解析>>

同步练习册答案