分析 (Ⅰ)由题意设出椭圆方程,结合已知列式求得a,b的值,则椭圆方程可求;
(Ⅱ)写出直线l的方程,与椭圆方程联立,利用根与系数的关系求出两交点的横坐标的和与积,代入弦长公式得答案.
解答 解:(I)由题意设椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
由已知得:a+c=3,$e=\frac{c}{a}=\frac{1}{2}$,解得a=2,c=1,∴b2=a2-c2=3,
∴椭圆的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(Ⅱ)由已知得直线l的方程为y=x+1,
与椭圆方程联立,可得7x2+8x-8=0,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{8}{7}$,x1x2=-$\frac{8}{7}$,
∴|AB|=$\sqrt{2}$|x1-x2|=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{8}{7})^{2}-4•(-\frac{8}{7})}=\frac{24}{7}$.
点评 本题考查椭圆的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{4}{3}$ | B. | -$\frac{7}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=1,y=$\frac{x}{x}$ | B. | y=$\sqrt{x-2}$•$\sqrt{x+2}$,y=$\sqrt{{x}^{2}-4}$ | ||
C. | y=x与y=logaax(a>0且a≠1) | D. | y=|x|,$y={({\sqrt{x}})^2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com