精英家教网 > 高中数学 > 题目详情

【题目】在 △ABC 中,设 a,b,c 分别是角 A,B,C 的对边,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周长的取值范围.

【答案】(1); (2).

【解析】

(1)利用正弦定理将正弦化为边,进而利用余弦定理即可得解;

(2)由正弦定理得从而得△ABC 的周长为:a+ b+c=,结合的范围即可得解.

(1)由,得:a(sinA + sinB)=(b + c)(sinC-sinB)

由正弦定理,得:a(a+ b)=(b + c)(c-b)

化为:a2+b2-c2=-ab,由余弦定理,得:cosC=-

所以,C=

(2)因为C=,所以,B=-A,由B>0,得:0<A<

由正弦定理,得:

△ABC 的周长为:a+ b+c=

由0<A<,得:

所以,周长C=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=2ax﹣x2+lnx,a为常数.
当a=时,求f(x)的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC对应边分别为abc

1)若a=14b=40cosB=,求cosC

2)若a=3b=B=2A,求c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于AB两点,F1为左焦点.

(1)求双曲线的方程;

(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月22日,在韩国平昌冬奥会短道速滑男子米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过个直道与弯道的交接口.已知某男子速滑运动员顺利通过每个交接口的概率均为,摔倒的概率均为.假定运动员只有在摔倒或到达终点时才停止滑行,现在用表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.

(1)求该运动员停止滑行时恰好已顺利通过个交接口的概率;

(2)求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一个社区微信群“步行者”有成员100人,其中男性70人,女性30人,现统计他们平均每天步行的时间,得到频率分布直方图,如图所示:

若规定平均每天步行时间不少于2小时的成员为“步行健将”,低于2小时的成员为“非步行健将”.已知“步行健将”中女性占.

(1)填写下面列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘步行健将’与性别有关”;

(2)现从“步行健将”中随机选派2人参加全市业余步行比赛,求2人中男性的人数的分布列及数学期望.

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,若AB//DEBC//EF

(1)求证:平面ABC//平面DEF

(2)已知是二面角C-AD-E的平面角.求证:平面ABC平面DABE

查看答案和解析>>

同步练习册答案