精英家教网 > 高中数学 > 题目详情
18.如图1,ABCD为长方形,AB=3,AD=$\sqrt{2}$,E,F分别是边AB,CD上的点,且AE=CF=1,DE与AF相交于点G,将三角形ADF沿AF折起至ADF',使得D'E=1,如图2.
(1)求证:平面D'EG⊥ABCF平面;
(2)求平面D'EG与平面所成锐二面角的余弦值.

分析 (1)推导出AF⊥D′G,AF⊥GE,从而AF⊥平面D′EG,由此能证明平面D′EC⊥平面ABCF.
(2)以E为原点,分别以EG、EC、ED′为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面D'EG与平面所成锐二面角的余弦值.

解答 证明:(1)如图1,在Rt△ADF和Rt△EAD中,
∵$\frac{DF}{AD}=\frac{AD}{AE}$=$\sqrt{2}$,∴△ADF∽△EAD,∴∠DAF=∠AED,
∴∠DAF+∠EAF=90°,∴∠AED+∠EAF=90°,
∴AF⊥DE,
如图2,AF⊥D′G,AF⊥GE,
∵D′G∩GE=G,AF⊥平面D′EG,
∵AF?平面ABCF,∴平面D′EG⊥平面ABCF.
解:(2)∵AD''=$\sqrt{2}$,AE=1,D′E=1,∴D′E⊥AE,
由(1)知 AF⊥平面D′EG,∴AF⊥D′E,
∵AE∩AF=A,∴D′E⊥平面ABCF,
∵AE∥CF,且AE=CF,∴四边形AECF为平行四边形,∴AF∥EC,
∴D′E、EC、GE两两垂直,
以E为原点,分别以EG、EC、ED′为x,y,z轴,建立空间直角坐标系,
则平面D′EG的一个法向量为$\overrightarrow{m}$=(0,1,0),
又D′(0,0,1),C(0,$\sqrt{6}$,0),F(-$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{6}}{3}$,0),
∴$\overrightarrow{{D}^{'}C}$=(0,$\sqrt{6}$,-1),$\overrightarrow{FC}$=($\frac{\sqrt{3}}{3},\frac{\sqrt{6}}{3}$,0),
设平面D′CF的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{D}^{'}C}=\sqrt{6}y-z=0}\\{\overrightarrow{n}•\overrightarrow{FC}=\frac{\sqrt{3}}{3}x+\frac{\sqrt{6}}{3}y=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(-$\sqrt{2},1,\sqrt{6}$),
∴cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1}{3}$,
∴平面D'EG与平面所成锐二面角的余弦值为$\frac{1}{3}$.

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.72B.76C.80D.88

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-2xlnx+x2-2ax+a2.记g(x)为f(x)的导函数.
(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+y+3=0,求a的值;
(2)讨论g(x)=0的解的个数;
(3)证明:对任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两个端点构成一个面积为1的直角三角形.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设过点M(0,t)(t>0)的直线l与椭圆E相交于A、B两点,点M关于原点的对称点为N,若点N总在以线段AB为直径的圆内,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆C:x2+y2+2x+4y=0的圆心到直线3x+4y=4的距离d=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,且a10=21,S10=120.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为B,右焦点为F,∠OFB=30°,P为线段BF的中点,且线段OP长为1.
(Ⅰ)试确定椭圆C的方程;
(Ⅱ)若直线l与圆E:x2+y2=3相切且交椭圆C于M,N两点,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列事件:①抛一枚硬币,出现正面朝上;②某人买彩票中奖;③大年初一太原下雪;④标准大气压下,水加热到90°C时会沸腾.其中随机事件的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,若S5=35,且a11=31,则公差d=3.

查看答案和解析>>

同步练习册答案