精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知抛物线,过点的直线交抛物线于两点.垂直于轴时,的面积为.

0

1)求抛物线的方程:

2)设线段的垂直平分线交轴于点.

①证明:为定值:

②若,求直线的斜率.

【答案】1;(2)①证明见解析;②.

【解析】

1)当垂直于轴时,求出坐标,利用三角形的面积转化求解抛物线方程即可.

2)①由题意可知直线轴不垂直..通过三点共线,得.

,得到.求出线段垂直平分线的方程,结合,转化求解即可.

解:(1)当垂直于轴时,

所以的面积为

因为,所以

所以抛物线的方程为.

2)①由题意可知直线轴不垂直.

由(1)知,设

.

三点共线,得

因为,化简得.

②因为,所以.

因为线段垂直平分线的方程为

,得.

因为,所以

,整理得

解得,故.

所以,即直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线与圆在第一象限交点为,曲线.

1)若,求b

2)若x轴交点是P是曲线上一点,且在第一象限,并满足,求∠

3)过点且斜率为的直线交曲线MN两点,用b的代数式表示,并求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等比数列,且满足,等差数列满足.

(Ⅰ)分别求数列的通项公式;

(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆四点中恰有三点在椭圆上,抛物线焦点到准线的距离为.

(1)求椭圆、抛物线的方程;

(2)过椭圆右顶点Q的直线与抛物线交于点AB,射线分别交椭圆于点.

i)证明:为定值;

ii)记的面积分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是

1)求曲线C直角坐标方程;

2)射线与曲线C相交于点,直线t为参数)与曲线C相交于点DE,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,是椭圆的左,右焦点,直线与椭圆相交于两点

1)若线段的中点为,求直线的方程;

2)若直线过椭圆的左焦点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的菱形中,,将菱形沿对角线折起,使得平面平面,则所得三棱锥的外接球表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体内部有一圆柱,此圆柱恰好以直线为轴.有下列命题:

①圆柱的母线与正方体所有的棱所成的角都相等;

②正方体所有的面与圆柱的底面所成的角都相等;

③在正方体内作与圆柱底面平行的截面,则截面的面积

④圆柱侧面积的最大值为.

其中正确的命题是______.

查看答案和解析>>

同步练习册答案