精英家教网 > 高中数学 > 题目详情
11.不等式|1-3x|<5的解集为{x|n<3-x<m},求m、n的值.

分析 求得不等式|1-3x|<5的解集为{x|-$\frac{4}{3}$<x<2}.再根据已知可得3-m=-$\frac{4}{3}$,且3-n=2,从而求得m、n的值.

解答 解:不等式|1-3x|<5,等价于-5<3x-1<5,等价于-$\frac{4}{3}$<x<2.
再根据|1-3x|<5的解集为{x|n<3-x<m},即 {x|3-m<x<3-n},可得3-m=-$\frac{4}{3}$,且3-n=2,
求得m=$\frac{13}{3}$,n=1.

点评 本题主要考查绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知公比为q的等比数列{an}中,a5+a9=$\frac{1}{2}$q,则a6(a2+2a6+a10)的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=-4x2+4ax-4a-a2在区间[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知log8a+log4b2=5,且log8b+log4a2=7.求log4$\sqrt{ab}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,
(1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1与q;
(3)a5=4,a7=6,求a9
(4)a5-a1=15,a4-a2=6,求a5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{2x+1,x≥0}\\{3x+1,x<0}\end{array}\right.$,若f(2-3a)>f(a),则实数a的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-$\frac{1}{2}$,+∞)D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若${C}_{n}^{n-2}$=28,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点P(2,-3),Q(3,2),过点(0,-2)与线段PQ相交直线的斜率的取值范围为[$-\frac{1}{2},\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域和值域:
(1)y=1-3x
(2)y=${3}^{\frac{1}{x-2}}$.
(3)y=$(\frac{1}{3})^{\sqrt{1-x}}$.

查看答案和解析>>

同步练习册答案