精英家教网 > 高中数学 > 题目详情
3.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤0}\\{2x-y≤4}\end{array}\right.$,则目标函数z=2x+3y的最小值为(  )
A.5B.4C.3D.2

分析 本题主要考查线性规划的基本知识,先画出约束条件 $\left\{\begin{array}{l}{x+y≥2}\\{x-y≤0}\\{2x-y≤4}\end{array}\right.$的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2x+3y的最小值.

解答 解:由约束条件得如图所示的阴影区域,
令2x+3y=z,即y=-$\frac{2}{3}$x+z,
显然当平行直线过点N(1,1)时,
z取得最小值为5;
故选A.

点评 在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex[x2-(1+a)x+1]
(1)若曲线y=f(x)在点P(0,f(0))处的切线与直线y=x+4平行,求a的值
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b,下表是某日各时的浪高数据:
t/时03691215182124
y/米2$\frac{3}{2}$1$\frac{3}{2}$2$\frac{3}{2}$0.99$\frac{3}{2}$2
则最能近似地表示表中数据间对应关系的函数是(  )
A.y=$\frac{1}{2}$cos$\frac{π}{6}$t+1B.y=$\frac{1}{2}$cos$\frac{π}{6}$t+$\frac{3}{2}$C.y=2cos$\frac{π}{6}$t+$\frac{3}{2}$D.y=$\frac{1}{2}$cos6πt+$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=e2x+ax在(0,+∞)上单调递增,则实数a的取值范围为(  )
A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某班一个学习小组在一次数学实践活动中,测得一组数据共5个,如表
xx1x2x3x45
y2.54.65.4n7.5
若x1+x2+x3+x4=10,计算得回归方程为$\stackrel{∧}{y}$=2.5x-2.3,则n的值为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的中心在原点,焦点为F1(0,-2$\sqrt{2}$),F2(0,2$\sqrt{2}$),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆的方程;
(2)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标为-$\frac{1}{2}$,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}的前n项和为Sn,${a_2}=-\frac{1}{2}$,且满足Sn,Sn+2,Sn+1成等差数列,则a3等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+ϕ),x∈R,其中$(A>0,ω>0,0<ϕ<\frac{π}{2})$的周期为π,且图象上一个最低点为$M(\frac{2π}{3},-2)$.
(1)求f(x)的解析式;
(2)当$x∈[0,\frac{π}{12}]$时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{{x}^{2}-2ax+3}$在(-1,1)上是单调递增的,则a的取值范围是(  )
A.[-2,-1]B.(-∞,-1]C.[1,2]D.[1,+∞)

查看答案和解析>>

同步练习册答案