精英家教网 > 高中数学 > 题目详情

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)的影响,对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:

年份(

2012

2013

2014

2015

2016

2017

年宣传费(万元)

23

25

27

29

32

35

年销售量(吨)

11

21

24

66

115

325

(1)根据散点图判断,哪一个更适合作为年销售量(吨)与关于宣传费(万元)的回归方程类型;

(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值大于1时,认为该年效益良好,现从这6年中任选3年,记其中选到效益良好的数量为,试求的所有取值情况及对应的概率;

(3)根据频率分布直方图中求出样本数据平均数的思想方法,求的平均数.

【答案】(1)散点图见解析;(2);(3).

【解析】分析:(1)根据散点图,即可判断出.

(2)由表中数据可知,效益良好有3年,设效益良好年为A、BC,其他年份为1、23,枚举法列出全部可能结果共20种,再分别确定其中满足效益良好的数量为年的种类,进而求出对应的概率;

(3)根据频率分布直方图求样本数据平均数的方法得:即可求出的平均数.

详解:解:(1)画出散点图易知,方程比较适宜;

(2)易得即6年中有3年是效益良好年”,

6年中效益好年份分别为:A,B,C,其他年份为1,2,36年中选3年的不同结果有:

ABC,AB1,AB2,AB3,AC1,AC2,AC3,BC1,BC2,BC3,A12,A13,A23,B12,B13,B23,C12,C13,C23,12320种;

其中1种,所以

其中9种,所以,

其中9种,所以,

其中1种,所以,

(3)根据频率分布直方图求样本数据平均数的方法得:

答:的平均数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
已知直线l过点P(﹣1,2),且倾斜角为 ,圆方程为
(1)求直线l的参数方程;
(2)设直线l与圆交与M、N两点,求|PM||PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底 的中点。

1)证明:直线平面

2)点在棱上,且直线与底面所成角为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国乒乓球队备战里约奥运会热身赛暨选拨赛于2016年7月14日在山东威海开赛,种子选手A与非种子选手B1 , B2 , B3分别进行一场对抗赛,按以往多次比赛的统计,A获胜的概率分别为 ,且各场比赛互不影响.
(Ⅰ)若A至少获胜两场的概率大于 ,则A入选征战里约奥运会的最终名单,否则不予入选,问A是否会入选最终的名单?
(Ⅱ)求A获胜场数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出结果为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的最小正周期;

(2)求函数的单调递增区间及对称中心;

(3)函数可以由经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图。

(一)人数统计表: (二)各年龄段人数频率分布直方图:

(Ⅰ)在答题卡给定的坐标系中补全频率分布直方图,并求出的值;

(Ⅱ)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动。若将这个人通过抽签分成甲、乙两组,每组的人数相同,求岁中被抽取的人恰好又分在同一组的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知产品的质量采用综合指标值进行衡量,为一等品;为二等品;为三等品.我市一家工厂准备购进新型设备以提高生产产品的效益,在某供应商提供的设备中任选一个试用,生产了一批产品并统计相关数据,得到频率分布直方图:

(1)估计该新型设备生产的产品为二等品的概率;

(2)根据这家工厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:

一等品

二等品

三等品

销售率

单件售价

根据以往的销售方案,未售出的产品统一按原售价的全部处理完.已知该工厂认购该新型设备的前提条件是,该新型设备生产的产品同时满足下列两个条件:

①综合指标值的平均数不小于(同一组中的数据用该组区间的中点值作代表);

②单件平均利润值不低于.

若该新型设备生产的产品的成本为元/件,月产量为件,在销售方案不变的情况下,根据以上图表数据,分析该新型设备是否达到该工厂的认购条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.

查看答案和解析>>

同步练习册答案