精英家教网 > 高中数学 > 题目详情
如图,AB是圆O的弦,点C在圆O上,延长BC到D,使BC=CD,AB=AD.
(1)求证:AB是圆O的直径;
(2)过C作圆O的切线交AD于E,且CD⊥AD,若AB=6,ED=2,求BC的长.
考点:与圆有关的比例线段
专题:
分析:(1)由BC=CD,AB=AD,得AC⊥BC,由此能求出AB是圆O的直径.
(2)由△ABC∽△CDE,得
AB
CD
=
BC
DE
,由此能求出BC=2
3
解答: (1)证明:∵BC=CD,AB=AD,
∴AC为等腰△ABD的中线,故AC⊥BC,
∴AB是圆O的直径.
(2)解:由(1)知△ABC∽△CDE,
AB
CD
=
BC
DE

∵BC=CD,
∴BC2=AB•DE=6×2=12,
解得BC=2
3
点评:本题考查直线是圆的直径的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=1-
2
3x+1

(1)求函数f(x)的定义域,判断并证明f(x)的奇偶性.
(2)用单调性定义证明函数f(x)在其定义域上是增函数;
(3)解不等式f(3m+1)+f(2m-3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|x+a|-2x,a<0,不等式f(x)≤0的解集为M,且M⊆{x|x≥2}.
(1)求实数a的取值范围;
(2)当a取最大值时,求f(x)在[1,10]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PA=
6
,PC=2
2
,PB=
10
,E是PC的中点,F是PB的中点.
(1)求证:EF∥平面ABC;
(2)求证:EF⊥平面PAC;
(3)求PC与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域分别为F,G,且F?G.若对任意的x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”.已知函数f(x)=2x(x≤0),若g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则函数g(x)的解析式是(  )
A、2|x|
B、log2|x|
C、(
1
2
|x|
D、log 
1
2
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某算法的流程图如图所示,输入的数x和y为自然数,若已知输出的有序数对为(7,6),则开始输入的有序数对(x,y)可能为(  )
A、(14,13)
B、(13,14)
C、(11,12)
D、(12,11)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过右焦点F的直线与双曲线交于A、B两点,且AB的中点为D(4,2),双曲线的离心率为
3
,则双曲线两焦点的距离等于(  )
A、7
B、
7
2
C、
4
7
D、
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:|x-3|+|x+1|≤6,命题q:|x+a|>x+a.
(1)求命题p,q对应不等式的解集A,B;
(2)若p⇒q为真命题,q⇒p为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案