精英家教网 > 高中数学 > 题目详情

【题目】曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线的交点分别为异于原点),当斜率时,求的最小值.

【答案】(1)的极坐标方程为;曲线的直角坐标方程.(2)

【解析】

(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.

(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;

解法2:设直线的极坐标方程为,分别代入曲线的极坐标方程,得 ,得出,即可基本不等式,即可求解.

(1) 由题曲线的参数方程为为参数),消去参数,

可得曲线的直角坐标方程为,即

则曲线的极坐标方程为,即

又因为曲线的极坐标方程为,即

根据,代入即可求解曲线的直角坐标方程.

(2)解法1:设直线的倾斜角为

则直线的参数方程为为参数,),

把直线的参数方程代入曲线的普通坐标方程得:

解得

把直线的参数方程代入曲线的普通坐标方程得:

解得

,即

当且仅当,即时取等号,

的最小值为.

解法2:设直线的极坐标方程为),

代入曲线的极坐标方程,得

把直线的参数方程代入曲线的极坐标方程得:

,即

曲线的参,即

当且仅当,即时取等号,

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角ABC的对边分别为abc,且,则的面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:

1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).

2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50。用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.

参考数据:若随机变量服从正态分布,则.

3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从)若掷出反面遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为P试证明是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线)与交于两点,与交于两点,当时,;当时,.

(1)求的值;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有个人说“能”,而有个人说“不能”,那么应用你学过的知识可算得圆周率的近似值为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

⑴当时,求函数的极值;

⑵若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是定义域上的增函数,求的取值范围;

2)设分别为的极大值和极小值,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450,深2.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400

1)求发酵池边长的范围;

2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).:发酵池的边长如何设计,可使得发酵馆占地面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且 .

(1)若 分别为 的中点,求证: 平面

(2)若 与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案