精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(x﹣ )cos(x﹣ )(x∈R),则下面结论错误的是(
A.函数f(x)的图象关于点(﹣ ,0)对称
B.函数f(x)的图象关于直线x=﹣ 对称
C.函数f(x)在区间[0, ]上是增函数
D.函数f(x)的图象是由函数y= sin2x的图象向右平移 个单位而得到

【答案】A
【解析】解:∵函数f(x)=sin(x﹣ )cos(x﹣ )= sin(2x﹣ ),令x=﹣ ,可得2x﹣ =﹣ ,f(x)≠0,
故函数f(x)的图象不关于点(﹣ ,0)对称,故A错误.
令x=﹣ ,可得2x﹣ =﹣ ,f(x)=0,故函数f(x)的图象关于点(﹣ ,0)对称,故B正确.
令x∈[0, ],可得2x﹣ ∈[﹣ ],故函数f(x)在区间[0, ]上是增函数,故C正确.
把函数y= sin2x的图象向右平移 个单位,可得y= sin(2x﹣ ) 的图象,故D正确,
故选:A.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是(
A.35
B.﹣3
C.3
D.﹣0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+ )升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【广西名校2017届高三上学期第一次摸底】如图,过抛物线一点作两条直线分别交抛物线于

斜率存在且倾斜角互补时

值;

直线上的截距时,面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(x、y)满足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},则求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],则求x>y的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 ,且圆心在直线.

1)求圆的标准方程;

2)直线过点且与圆有两个不同的交点,若直线的斜率大于0,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆外一点,过点作圆的切线,切点为,记四边形的面积为,当在圆上运动时, 的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点,点为其上一点,且有.

(1)求椭圆的标准方程;

(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲所示, 是梯形的高, ,现将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.

(1)证明: 不可能垂直;

(2)当时,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案