精英家教网 > 高中数学 > 题目详情
12.已知tan60°=m,则cos120゜的值是(  )
A.$\frac{1}{{\sqrt{1+{m^2}}}}$B.$\frac{1-{m}^{2}}{1+{m}^{2}}$C.$\frac{m}{{\sqrt{1+{m^2}}}}$D.-$\frac{m}{{\sqrt{1+{m^2}}}}$

分析 利用同角三角函数的基本关系,二倍角的余弦公式求得cos120゜的值.

解答 解:tan60°=m,则cos120°=cos260°-sin260°=$\frac{{cos}^{2}60°{-sin}^{2}60°}{{cos}^{2}60°{+sin}^{2}60°}$=$\frac{1{-tan}^{2}60°}{1{+tan}^{2}60°}$=$\frac{1{-m}^{2}}{1{+m}^{2}}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|x2-4x+3=0},B={x|mx+1=0,m∈R},A∩B=B,求实数m的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.原命题“若xy=1,则x,y互为倒数”,则(  )
A.逆命题与逆否命题真,否命题假B.逆命题假,否命题和逆否命题真
C.逆命题和否命题真,逆否命题假D.逆命题、否命题、逆否命题都真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.随机变量ξ服从正态分布N(50,σ2),若P(ξ<40)=0.3,则P(40<ξ<60)=0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-2$\sqrt{3}$,0),上下顶点分别为A,B,已知△AFB是等边三角形.
(1)求椭圆C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正方体ABCD-A1B1C1D1的棱长为a
(1)求证A1C⊥平面BC1D
(2)求四面体A1BDC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知离散型随机变量ξ的分布列为
ξ102030
P0.6a$\frac{1}{4}$-$\frac{a}{2}$
则D(3ξ-3)等于(  )
A.42B.135C.402D.405

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow a=({2,1}),\overrightarrow b=({-1,1}),({2\overrightarrow a+\overrightarrow b})∥({\overrightarrow a-m\overrightarrow b})$,则m=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z满足(1+i)•z=2-i,则复数z的共轭复数$\overline z$=(  )
A.$\frac{1-3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{-1-3i}{2}$D.$\frac{-1+3i}{2}$

查看答案和解析>>

同步练习册答案