精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow{b}$=(2sin(x+$\frac{π}{6}$),1),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,
(1)求f(x)的解析式以及最小正周期;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

分析 (1)把向量的坐标代入数量积公式,化简可得f(x)的解析式,利用周期公式求周期;
(2)由x的范围得到相位的范围,则三角函数的最值可求.

解答 解:(1)∵$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow{b}$=(2sin(x+$\frac{π}{6}$),1),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$4sin(x+\frac{π}{6})cosx-1$=$4(sinxcos\frac{π}{6}+cosxsin\frac{π}{6})cosx-1$
=$4(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx)cosx-1$=$\sqrt{3}sin2x+2co{s}^{2}x-1$=$\sqrt{3}sin2x+cos2x$=$2sin(2x+\frac{π}{6})$.
最小正周期T=$\frac{2π}{2}=π$;
(2)$f(x)=2sin(2x+\frac{π}{6})$,
∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],∴$2x+\frac{π}{6}∈[-\frac{π}{6},\frac{2π}{3}]$,
则f(x)max=2,f(x)min=-1.

点评 本题考查平面向量的数量积运算,考查了三角函数的图象和性质,训练了三角函数值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权取得费为2000元/m2;材料工程费在建造第一层时为400元/m2;以后每增加一层费用增加40元/m2;要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成10层.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设周期函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且满足f(1)>-2,f(2)=m2-m,则m的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,已知a1=$\frac{1}{3}$,a3=$\frac{5}{3}$,an=33,则n=(  )
A.48B.49C.50D.51

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的通项公式为an=log2(3+n2)-2,那么log23是这个数列的第3项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=(1+\frac{1}{tanx}){sin^2}x+msin(x+\frac{π}{4})sin(x-\frac{π}{4})$
(1)当m=0时,求f(x)的最小正周期并求f(x)在$[\frac{π}{8},\frac{3π}{4}]$上的取值范围
(2)当tanα=2时,f(α)=$\frac{3}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若对?x,y∈(0,+∞),不等式4xlna<ex+y-2+ex-y-2+2恒成立,则正实数a的最大值是(  )
A.$\sqrt{e}$B.$\frac{1}{2}$eC.eD.2e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为解决蔬菜保鲜问题,很多菜农在政府的引导下投资建立冷库,把蔬菜的销售时间延长,某菜农计划在自己的住房旁边建一个长方体型简易冷库,高度为2米,利用现有的住房的一面墙作为冷库的东墙,冷库的西墙利用钢结构,每平方米造价200元,南北两墙砌砖,每平方米造价225元,顶部每平方米造价200元.设西墙的长度为x元,冷库的占地面积为S平方米.
(1)若S=121,则该菜农至少需要投资多少元?
(2)若菜农计划投资32000元,求S的最大值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过点P(2,3)作直线l,使l与点A(-1,-2),B(7,4)的距离相等,这样的直线l存在吗?若存在,求出其方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案