精英家教网 > 高中数学 > 题目详情
已知正三棱锥的底面边长为
2
,各侧面均为直角三角形,则它的外接球体积为(  )
A、
4
3
π
27
B、
2
π
3
C、
3
π
2
D、
3
考点:球的体积和表面积,球内接多面体
专题:空间位置关系与距离
分析:底面边长为
2
,各侧面均为直角三角形的正三棱锥可以看作是正方体的一个角,故此正三棱锥的外接求即此正方体的外接球,由此求出正方体的体对角线即可得到球的直径,即可求解体积.
解答: 解:由题意知此正三棱锥的外接球即是相应的正方体的外接球,此正方体的面对角线为
2
,边长为1.
正方体的体对角线是
1+1+1
=
3

故外接球的直径是
3
,半径是
3
2

故其体积是
4
3
π(
3
2
)
3
=
3
π
2

故选:C.
点评:本题考查球内接多面体,解题的关键是找到球的直径与其内接多面体的量之间的关系,由此关系求出球的半径进而得到其体积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

读如图程序,当输出的值y的范围大于1时,则输入的x值的取值范围是(  )
A、(-∞,-1)
B、(1,+∞)
C、(-∞,-1)∪(1,+∞)
D、(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是线段AB上的一点,且∠CDB1=90°,AA1=CD,则点A1到平面B1CD的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学甲、乙两班各10名学生,测量他们的体重(单位:kg),获得体重数据的茎叶图如图:
(1)根据茎叶图判断哪个班的平均体重较重;
(2)计算甲班的众数、极差和样本方差;
(3)现从乙班这10名体重不低于64kg的学生中随机抽取两名,求体重为67kg的学生被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如表是某校高一年级一次考试中数学和英语的成绩抽样:
        A B C
 A 7 20 5
 B 9 18 6
 C a 4 b
若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与英语成绩.例如:表中数学成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.
(1)若在该样本中,数学成绩优秀是30%,求a,b的值;
(2)在英语成绩为C等级的学生中,已知a=10,b=8,求数学成绩为A等级的人数比C等级的人数少数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-2cos2x+1.
(Ⅰ)当x∈[0,
π
2
]时,求函数f(x)的最大值;
(Ⅱ)若f(α)=
8
5
(α∈[0,
π
6
]),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=(x-1)•|x-3|,x∈R,若f(x)=ax有3个不相等的实数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|log2x-m|log2x+2log2x-3(m∈R).
(1)若m=1,求函数f(x)在区间[
1
4
,4
]的值域;
(2)若函数y=f(x)在(0,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且直线AM,BM的斜率之积为-
1
2

(1)求点M的轨迹C的方程
(2)过D(2,0)的直线l与轨迹C有两个不同的交点时,求l的斜率的取值范围;
(3)若过D(2,0)的直线l与(1)中的轨迹C交于不同的E、F(E在D、F之间),求△ODE与△ODF的面积之比的取值范围(O为坐标原点).

查看答案和解析>>

同步练习册答案