精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x-klnx,常数k>0.
(1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间;
(2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取值范围.

分析 (1)求导函数,根据x=1是函数f(x)的一个极值点,可求k的值,令f′(x)>0,可得函数F(x)的单调递增区间,令f′(x)<0,可得单调递减区间;
(2)根据函数g(x)=xf(x)在区间(1,2)上是增函数,可得g′(x)=2x-k(1+lnx)≥0对x∈(1,2)恒成立,即k≤$\frac{2x}{1+lnx}$对x∈(1,2)恒成立,求出最小值,即可求得k的取值范围.

解答 解(1):求导函数,可得f′(x)=1-$\frac{k}{x}$,因为x=1是函数f(x)的一个极值点,f′(1)=0,
∴k=1,
∴f′(x)=1-$\frac{1}{x}$,
令f′(x)>0,可得x∈(1,+∞)∪(-∞,0),
∵x>0,
∴x∈(1,+∞)
令f′(x)<0,可得x∈(0,1),
故函数F(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).
(2):因为函数g(x)=xf(x)在区间(1,2)上是增函数,则g′(x)=2x-k(1+lnx)≥0对x∈(1,2)恒成立,即k≤$\frac{2x}{1+lnx}$对x∈(1,2)恒成立,
令h(x)=$\frac{2x}{1+lnx}$
∴h′(x)=$\frac{2lnx}{(1+lnx)^{2}}$对x∈(1,2)恒成立.
所以h(x)在(1,2)单调递增,hmin(x)>h(1)=2,
∴k≤2.

点评 本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,解题的关键是分离参数,确定函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知等差数列{xn},Sn是{xn}的前n项和,且x3=5,S5+x5=34.
(Ⅰ)求{xn}的通项公式;
(Ⅱ)设an=($\frac{1}{3}$)n,Tn是{an}的前n项和,是否存在正数λ,对任意正整数n,k,不等式Tn-λxk2<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列,数列{bn}是各项为正数的等比数列,且公比q≠1,若a2=b2,a10=b10,则(  )
A.a6>b6B.a6=b6C.a6<b6D.a6>b6或a6<b6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|log2x<3},N={x|x=2n+1,n∈N},则M∩N=(  )
A.(0,8)B.{3,5,7}C.{0,1,3,5,7}D.{1,3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图(1),抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.

(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图(2)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线抛物线于E、F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y 轴上?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某人一次同时掷出三枚硬币,
(1)该实验的基本事件有几个?请列出来;
(2)求三枚硬币均为正面朝上的概率;
(3)求有两枚硬币正面朝上,一枚硬币反面朝上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l:mx-y=4,若直线l与直线x+m(m-1)y=2垂直,则m的值为0,2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,求a3
(2)三件产品中含有两件正品a,b和一件次品c,每次任取一件,按以下方式连取两次,分别求恰有一件次品的概率.①取后不放回;  ②取后放回.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用定义证明函数y=x+$\frac{1}{x}$在(1,+∞)上为增函数.

查看答案和解析>>

同步练习册答案