精英家教网 > 高中数学 > 题目详情

【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.
(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

【答案】证明:(Ⅰ)∵几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,

∴AD⊥AF,AD⊥AB,

又AF∩AB=A,

∴AD⊥平面ABEF,

又AD平面PAD,

∴平面PAD⊥平面ABFE.

解:(Ⅱ)以A 为原点,AB、AE、AD的正方向为x,y,z轴,建立空间直角坐标系A﹣xyz

设正四棱棱的高为h,AE=AD=2,

则A(0,0,0),F(2,2,0),C(2,0,2),P(1,﹣1,1)

设平面ACF的一个法向量 =(x,y,z),

=(2,2,0), =(2,0,2),

,取x=1,得 =(1,﹣1,﹣1),

设平面ACP的一个法向量 =(a,b,c),

,取b=1,则 =(﹣1,1,1+h),

二面角C﹣AF﹣P的余弦值

∴|cos< >|= = =

解得h=1.


【解析】
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一元二次不等式f(x)<0的解集为{x|x<﹣1或 ,则f(ex)>0的解集为(
A.{x|x<﹣1或x>﹣ln3}
B.{x|﹣1<x<﹣ln3}
C.{x|x>﹣ln3}
D.{x|x<﹣ln3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为y2=4x,直线L过定点P(﹣2,1),斜率为k.当k为何值时直线与抛物线:
(1)只有一个公共点;
(2)有两个公共点;
(3)没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos22x﹣2,给出下列命题:
β∈R,f(x+β)为奇函数;
α∈(0, ),f(x)=f(x+2α)对x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为
x1 , x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有( )
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A(n)表示正整数n的个位数,an=A(n2)﹣A(n),A为数列{an}的前202项和,函数f(x)=ex﹣e+1,若函数g(x)满足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),则数列{bn}的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为(2 ).
(Ⅰ)求直线l以及曲线C的极坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x)在(﹣∞,0]上是减函数,且 =2,则不等式f(log4x)>2的解集为( )
A.
B.(2,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 .求:
(1)曲线C上横坐标为1的点处的切线方程;
(2)(1)中的切线与曲线C是否还有其他的公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 + + =m,求证:a2+b2+c2≥36.

查看答案和解析>>

同步练习册答案