精英家教网 > 高中数学 > 题目详情
椭圆的焦点坐标是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)
A

试题分析:化为标准方程得,焦点为
点评:椭圆中由可求得值,结合焦点位置得到焦点坐标,本题较容易
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为
上顶点为,在轴负半轴上有一点,满足,且

(Ⅰ)求椭圆的离心率;
(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为(   )
A. 10B. 5C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线轴上的截距为,设直线交椭圆于两个不同点

(1)求椭圆方程;
(2)求证:对任意的的允许值,的内心在定直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,
求椭圆的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一动点P到两焦点距离之和为(    )
A.10B.8C.6D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是方程x=0的两个实根,那么过点)的直线与椭圆的位置关系是
A.相交B.相切C.相交或相切D.相离

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为         

查看答案和解析>>

同步练习册答案