精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆M经过圆Nx轴的两个交点和与y轴正半轴的交点.

1)求椭圆M的方程;

2)若点P为椭圆M上的动点,点Q为圆N上的动点,求线段PQ长的最大值;

3)若不平行于坐标轴的直线交椭圆MAB两点,交圆NCD两点,且满足求证:线段AB的中点E在定直线上.

【答案】1;(2;(3)证明见解析.

【解析】

1)根据圆的方程求出圆与坐标轴的交点坐标,再根据题意,即可求出椭圆方程;

2)先由椭圆方程,设,根据两点间距离公式,先求出点到圆圆心的距离,根据圆的特征,得到(其中为圆的半径),即可求出结果;

3)先设,直线的方程为,联立直线与椭圆方程,结合韦达定理得到其中点坐标为;再由题意,得到,推出,求出的关系式,进而可求出结果.

1)因为圆,令,则,所以圆轴正半轴的交点为

,则,即圆轴的两个交点为

因为椭圆经过圆轴的两个交点和与轴正半轴的交点,所以

即椭圆的方程为:

2)由(1)可设

则点到圆的圆心的距离为:

当且仅当时,等号成立;

又点为圆上的动点,由圆的性质可得:

(其中为圆的半径);

3)设,直线的方程为

消去

整理得:

所以,所以

所以中点的坐标为:

因为直线交圆于点,且

因此也是的中点;

根据圆的性质可得:

所以,即,整理得

所以,因此点在定直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,的准线与轴的交点,点在抛物线上,设,有以下个结论:

的最大值是;②;③存在点,满足.

其中正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,ABCBCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axexgx)=x2+2x+b,若曲线yfx)与曲线ygx)都过点P1c).且在点P处有相同的切线l

(Ⅰ)求切线l的方程;

(Ⅱ)若关于x的不等式k[efx]≥gx)对任意x[1+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)求曲线的参数方程与直线的普通方程;

(Ⅱ)设点为曲线上的动点,点和点为直线上的点,且.面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知方程为常数)在上恰有三个根,分别为,下述四个结论:

①当时,的取值范围是

②当时,上恰有2个极小值点和1个极大值点;

③当时,上单调递增;

④当时,的取值范围为,且

其中正确的结论个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.

1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;

2)若过点(极坐标)且倾斜角为的直线l与曲线C交于MN两点,弦MN的中点为P,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点轴上,点轴上,且.当点轴上运动时,点的轨迹记为曲

(Ⅰ)求曲线的轨迹方程;

(Ⅱ)过曲线上一点,作圆的切线,交曲线两点,若直线垂直于直线,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,PQMNHR是各条棱的中点.

①直线平面;②;③PQHR四点共面;④平面.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案