【题目】设奇函数f(x)在区间[﹣7,﹣3]上是减函数且最大值为﹣5,函数g(x)= ,其中a< .
(1)判断并用定义法证明函数g(x)在(﹣2,+∞)上的单调性;
(2)求函数F(x)=f(x)+g(x)在区间[3,7]上的最小值.
【答案】
(1)解:函数g(x)在(﹣2,+∞)上是减函数,
证明如下:
设﹣2<x1<x2,
∵g(x)=a+ ,
∴g(x2)﹣g(x1)
=(a+ )﹣(a+ )
=(1﹣2a) ,
∵﹣2<x1<x2,
∴ <0,
∵a< ,∴g(x2)<g(x1),
∴a< 时,g(x)在(﹣2,+∞)递减;
(2)解:由题意得:f(x)max=f(﹣7)=﹣5,且f(x)是奇函数,
∴f(7)=5,即f(x)在区间[3,7]上的最小值是5,
由(1)得:g(x)在[3,7]上也是减函数,
∴F(x)min=f(7)+g(7)= .
【解析】(1)根据函数单调性的定义证明即可;(2)分别求出f(x)和g(x)的最小值,求出F(x)的最小值即可.
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).
科目:高中数学 来源: 题型:
【题目】已知圆M的圆心M在x轴上,半径为1,直线 ,被圆M所截的弦长为 ,且圆心M在直线l的下方. (Ⅰ)求圆M的方程;
(Ⅱ)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2 , 三月底测得覆盖面积为36m2 , 凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=kax(k>0,a>1)与y=px +q(p>0)可供选择. (Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;
(Ⅱ)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份.
(参考数据:lg2≈0.3010,lg3≈0.4771)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (Ⅰ)证明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosx+sinx,1), =(cosx+sinx,﹣1)函数g(x)=4 .
(1)求函数g(x)在[ , ]上的值域;
(2)若x∈[0,2016π],求满足g(x)=0的实数x的个数;
(3)求证:对任意λ>0,都存在μ>0,使g(x)+x﹣4<0对x∈(﹣∞,λμ)恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若偶函数f(x)在区间[﹣1,0]上是减函数,α,β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )
A.f(cosα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(sinβ)
D.f(sinα)>f(sinβ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>0,b>0)经过点(﹣ , ).且离心率为 .
(1)求椭圆C的方程;
(2)若过椭圆C的左焦点F作两条互相垂直的动弦AB与CD,记由A,B,C,D四点构成的四边形的面积为S,求S的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com