精英家教网 > 高中数学 > 题目详情

(本题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.

某校15名学生组成该校“科技创新周”志愿服务队(简称“科服队”),他们参加活动的有关数据统计如下:

参加活动次数

1

2

3

人  数

3

4

8

  

(1)从“科服队”中任选3人,使得这3人参加活动次数各不相同,这样的选法共有多少种?

(2)从“科服队”中任选2人,求这2人参加活动次数之和大于3的概率.

解:(1)在参加活动次数为的三组学生中各取一个人,

则选法种数为

   故3人参加活动次数各不相同的选法共有96种.   ……………………………5分

(2)2人参加活动次数之和不大于3的概率为

        ,                   ……………………………10分

   故他们参加活动次数之和大于3的概率为

所以,2人参加活动次数之和大于3的概率.   ……………………………13分

(另法:(2)中可用直接法来求解)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径取何值时,取得最大值?并求出该

最大值(结果精确到0.01平方米);

(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线所在异面直线所成角的大小(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径取何值时,取得最大值?并求出该

最大值(结果精确到0.01平方米);

(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线所在异面直线所成角的大小(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源:2011届福建厦门双十中学高三考前热身理数试卷 题型:解答题

(本小题满分13分)
已知数列满足,数列满足,数列
满足
(Ⅰ)求数列的通项公式;
(Ⅱ),试比较的大小,并证明;
(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建厦门双十中学高三考前热身理数试卷 题型:解答题

(本小题满分13分)

已知数列满足,数列满足,数列

满足

(Ⅰ)求数列的通项公式;

(Ⅱ),试比较的大小,并证明;

(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

已知数列满足,数列满足,数列

满足

(Ⅰ)求数列的通项公式;

(Ⅱ),试比较的大小,并证明;

(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.

查看答案和解析>>

同步练习册答案