精英家教网 > 高中数学 > 题目详情
8.如果一扇形的圆心角为120°,半径等于10cm,则扇形的面积为(  )
A.$\frac{100}{3}c{m^2}$B.$\frac{100}{3}πc{m^2}$C.6000cm2D.$\frac{200}{3}πc{m^2}$

分析 先求弧长,再求面积即可.

解答 解:扇形的弧长是l=$\frac{2π}{3}$×10=$\frac{20π}{3}$
则扇形的面积是:$\frac{1}{2}$lr=$\frac{1}{2}$×$\frac{20π}{3}$×10=$\frac{100π}{3}$cm2
故选:B.

点评 本题考查扇形弧长、面积公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.曲线y=2x3,求该曲线在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.P为椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上的右顶点,A,B为椭圆上关于原点对称两点且PA,PB斜率存在,直线PA,PB分别与直线x=3交于M,N两点.
(1)求MN的最小值;
(2)证明以MN为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$(a>0且a≠1)是定义域为R的奇函数.
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的图象过点(1,$\frac{3}{2}$),是否存在正数m,且m≠1使函数g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值为0,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ln$\frac{ex}{e-x},若f(\frac{e}{2013})+f(\frac{2e}{2013})+…+f(\frac{2012e}{2013})=503(a+b),则{a^2}+{b^2}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.比较sin1,sin2与sin3的大小关系为sin3<sin1<sin2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数y=a-bsinx的最大值为$\frac{3}{2}$,最小值为$-\frac{1}{2}$,
(1)求a,b的值;
(2)求函数y=-asinx取得最大值时的x的值;
(3)请写出函数y=-asinx的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.实轴是虚轴的3倍,且经过点P(3,0)的双曲线的标准方程是$\frac{x^2}{9}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=log2(ax2-4x+4)的定义域为R,则实数a的取值范围是(  )
A.(0,1]B.[0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案