【题目】已知正项数列{an}的前n项和为Sn,且满足a1=2,anan+1=2(Sn+1) ().
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,(,),求{bn}的前n项和Tn;
(3)若数列{cn}满足,(,),试问是否存在正整数p,q(其中1 < p < q),使c1,cp,cq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
【答案】(1);(2);(3)见解析.
【解析】试题分析:(1)由anan+1=2(Sn+1),可得an+1an+2=2(Sn+1+1),两式相减可得an+2an=2,讨论奇偶可得;(2),,利用裂项相消法可得结果;(3)假设存在正整数数对(p,q),使c1,cp,cq成等比数列,可得合题意,再证明p3时不合题意即可.
试题解析:(1)由题意anan+1=2(Sn+1), ①
an+1an+2=2(Sn+1+1), ②
由①②得到:an+1(an+2an)=2an+1, ③
因为an+1>0,则an+2an=2, ④
又a1=2,由④可知;a2=3,由④可知;
因此,.
(2)当n=1时
当时,
==
==;
则=.
(3)假设存在正整数数对(p,q),使c1,cp,cq成等比数列,即c1cq=cp2,
则lgc1+lgcq=2 lgc p成等差数列,于是,(*).
当时, ,此时,;
可知(p,q)=(2,3) 恰为方程(*)的一组解.
又当p3时,<0,故数列{}(p≥3)为递减数列.
于是=≤<0,所以此时方程(*)无正整数解.
综上,存在惟一正整数数对(p,q)=(2,3),使c1,cp,cq成等比数列.
【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②
;③;
④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin2x的图象,只需把函数y=sin(2x﹣ )的图象( )
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照, , , 分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲罐中有4个红球,3个白球和3个黑球;乙罐中有5个红球,3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1、A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,下列的结论:
①P(B)= ;
②P(B|A1)= ;
③事件B与事件A1不相互独立;
④A1 , A2 , A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1 , A2 , A3中哪一个发生有关,
其中正确结论的序号为 . (把正确结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某休闲农庄有一块长方形鱼塘ABCD,AB=50米,BC=25 米,为了便于游客休闲散步,该农庄决定在鱼塘内建三条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】梯形ABCD顶点B、C在以AD为直径的圆上,AD=2米,
(1)如图1,若电热丝由AB,BC,CD这三部分组成,在AB,CD上每米可辐射1单位热量,在BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;
(2)如图2,若电热丝由弧和弦BC这三部分组成,在弧上每米可辐射1单位热量,在弦BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.
(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);
(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C: + =1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为 ,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2 ,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com