精英家教网 > 高中数学 > 题目详情
15.命题“若 $α=\frac{π}{4}$,则 tanα=1”的逆否命题是(  )
A.若 $α≠\frac{π}{4}$,则tanα≠1B.若 $α=\frac{π}{4}$,则tanα≠1
C.若 tanα≠1,则$α≠\frac{π}{4}$D.若 tanα≠1,则$α=\frac{π}{4}$

分析 根据命题“若p则q”的逆否命题是“若¬q则¬p”,写出即可.

解答 解:命题“若 $α=\frac{π}{4}$,则 tanα=1”的逆否命题是
“若  tanα≠1,则$α≠\frac{π}{4}$”.
故选:C.

点评 本题考查了命题与逆否命题的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2-ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
设数列{an}的前n项和Sn=f(n).
(1)求函数f(x)的表达式;
(2)设各项均不为0的数列{bn}中,所有满足bi•bi+1<0的整数i的个数称为这个数列{bn}的变号数,令${b_n}=1-\frac{a}{a_n}$(n∈N*),求数列{bn}的变号数;
(3)设数列{cn}满足:${c_n}=\sum_{i=1}^n{\frac{1}{{{a_i}•{a_{i+1}}}}}$,试探究数列{cn}是否存在最小项?若存在,求出该项,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)是定义域为R,最小正周期$\frac{3π}{2}$的函数,若f(x)=sinx,x∈[0,π],则f($\frac{15π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|2≤2x≤8},B={x|x>2},全集U=R.
(1)求(∁UB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①函数y=|x|与函数y=($\sqrt{x}$)2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$C:\frac{x^2}{8+a}+\frac{y^2}{9}=1$的焦距为$4\sqrt{2}$,则a=9或-7;当a<0时,椭圆C上存在一点P,有|PF1|=2|PF2|(F1,F2为椭圆焦点),则△F1PF2的面积为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某程序框图如图所示,则该程序运行后输出的B等于(  )
A.2B.5C.14D.41

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC=$\frac{1}{2}$AD=2,CD=4
(1)求证:直线PA∥平面QMB;
(2)若PC=2$\sqrt{5}$,求三棱锥P-MBQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线的焦点在x轴上,|F1F2|=2$\sqrt{3}$,渐近线方程为$\sqrt{2}x±y=0$,问:过点B(1,1)能否作直线l,使l与双曲线交于M,N两点,并且点B为线段MN的中点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案