精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=
k(x-1)
x

(1)当k=e时,求函数h(x)=f(x)-g(x)的单调区间和极值;
(2)若f(x)≥g(x)恒成立,求实数k的值.
考点:利用导数研究函数的极值
专题:导数的综合应用
分析:(1)把k=e代入函数解析式,求出函数的导函数,由导函数的符号得到函数的单调区间,进一步求得函数的极值;
(2)求出函数h(x)的导函数,当k≤0时,由函数的单调性结合h(1)=0,可知h(x)≥0不恒成立,当k>0时,由函数的单调性求出函数h(x)的最小值,由最小值大于等于0求得k的值.
解答: 解:(1)注意到函数f(x)的定义域为(0,+∞),
∴h(x)=lnx-
k(x-1)
x

当k=e时,
∴h(x)=lnx-
e(x-1)
x

∴h′(x)=
1
x
-
e
x2
=
x-e
x2

若0<x<e,则h′(x)<0;若x>e,则h′(x)>0.
∴h(x)是(0,e)上的减函数,是(e,+∞)上的增函数,
故h(x)min=h(e)=2-e,
故函数h(x)的减区间为(0,e),增区间为(e,+∞),极小值为2-e,无极大值.
(2)由(1)知,h′(x)=
1
x
-
k
x2
=
x-k
x2

当k≤0时,h′(x)>0对x>0恒成立,
∴h(x)是(0,+∞)上的增函数,
注意到h(1)=0,∴0<x<1时,h(x)<0不合题意.
当k>0时,若0<x<k,h′(x)<0;
若x>k,h′(x)>0.
∴h(x)是(0,k)上的减函数,是(k,+∞)上的增函数,
故只需h(x)min=h(k)=lnk-k+1≥0.
令u(x)=lnx-x+1(x>0),
∴u′(x)=
1
x
-1=
1-x
x

当0<x<1时,u′(x)>0; 当x>1时,u′(x)<0.
∴u(x)是(0,1)上的增函数,是(1,+∞)上的减函数.
故u(x)≤u(1)=0当且仅当x=1时等号成立.
∴当且仅当k=1时,h(x)≥0成立,
即k=1为所求.
点评:本题考查了函数恒成立问题,考查了数学转化思想方法和函数构造法,训练了利用函数的导函数判断函数的单调性,训练了利用导数求函数的最值,是有一定难度题目
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知3x+3y=9x+9y,求
27x+27y
3x+3y
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB为圆O的直径,AC与圆O相切于点A,CE∥AB交圆O于D、E两点,若AB=6,BE=2,则线段CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求
4sinα-2cosα
5cosα+3sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

求证下列等式成立:
n
R=1
R(R+1)=
n(n+1)(n+2)
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:日销售量Q(件)与实际销售价x(元)满足关系:
Q=
50-10(x-8),8≤x<13
39(2x2-29x+107),(5<x<7)
198-6x
x-5
,(7≤x<8)

(1)求总利润(利润=销售额-成本)y(元)与销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,且Sn=2an-1;
(1)求数列{an}前n项的和Sn
(2)若数列(bn)满足bn=logSn+1+12logSn+12(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车租赁公司的月收益y元与每辆车的月租金x元间的关系为y=-
x2
50
+162x-21000.
(1)当每辆车的月租金定为5000元时,能租出多少辆车?
(2)每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学对函数f(x)=xcosx进行研究后,得出以下五个结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,f(x)>0均成立;
③函数[a,b]的图象与x轴有无穷多个公共点,且任意相邻两点的距离相等;
④函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
⑤当常数k满足|k|>1时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.
其中所有正确结论的序号是(  )
A、①②④B、①②③④
C、①②④⑤D、①②③④⑤

查看答案和解析>>

同步练习册答案