精英家教网 > 高中数学 > 题目详情
设集合A={x|x2-ax+a-1=0},B={x|x2+3x-2a2+4=0},且A∩B={1},求A∪B.
考点:并集及其运算,交集及其运算
专题:集合
分析:由已知条件推导出a=±2:若a=2,则A={x|x2-2x+1=0}={1},B={x|x2+3x-4=0}={-4,1},从而能求出A∪B;若a=-2,则A={x|x2+3x-3=0}={-3,1},B={x|x2+3x-4=0}={-4,1},从而能求出A∪B.
解答: 解:∵A∩B={1},
∴由1∈B,得1+3-2a2+4=0,∴a2=4,∴a=±2(4分)
①若a=2,则A={x|x2-2x+1=0}={1},
B={x|x2+3x-4=0}={-4,1},
∴A∪B={-4,1}(8分)
②若a=-2,则A={x|x2+3x-3=0}={-3,1}
  B={x|x2+3x-4=0}={-4,1},
∴A∪B={-4,-3,1}.(12分)
点评:本题考查并集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R),使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f(x)为“倍增函数”,λ为“倍增系数”,下列说法中正确的序号是
 

①若函数y=f(x)是倍增系数λ=-2的“倍增函数”,则y=f(x)至少有1个零点;
②函数f(x)=2x+1是“倍增函数”,且“倍增系数”λ=1;
③函数f(x)=logax(a>0且a≠1)不可能是“倍增函数”;
④函数f(x)=
e
-x
 
是“倍增函数”,且“倍增系数”λ∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,m),
b
=(2,-m),若
a
b
,则实数m等于(  )
A、-
2
B、
2
C、0
D、-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3},B={y|y≥1},则A*B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,
i3(i+1)
i-1
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c均为大于-1的实数,且a+b+2c=1,设
a+1
+
b+1
+
c+1
的最大值为m,求不等式|
2
x|-m|x-3|>0中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比大于1的等比数列,已知a1+a2=8,a3+a4=72.
(1)求数列{an}通项公式;
(2)若bn=
n•an
2
,求数列{bn}前n项和;
(3)若{cn}满足cn=an+(-1)nlnan,求数列{cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若点T(x0,y0)是抛物线:y2=4x上的动点,则圆:(x-x02+(y-y02=(1+x02恒过定点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+b)的图象不经过第一象限,则a的取值范围是
 
,b的取值范围是
 

查看答案和解析>>

同步练习册答案