精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面是一直角梯形,,底面.

1)在线段上是否存在一点F,使得平面,若存在,求出的值;若不存在,试说明理由;

2)在(1)的条件下,若所成的角为,求二面角的余弦值.

【答案】1)存在,2;(2.

【解析】

1)假设存在点F,建立如图所示的空间直角坐标系,F,写出的坐标,并求出面平面的一个法向量,利用求出的值,即可得答案;

2,因为所成的角为,可得

取平面的一个法向量,利用向量的坐标运算求出,即可得答案;

1)建立如图所示的空间直角坐标系,DC,设,则P,假设存在点F,使平面F

设平面的一个法向量为

,取,则

,要使平面

,即,解得:

所以.

2,因为所成的角为,所以

,则

由(1)知平面的一个法向量为

,∴

,∴

平面,∴,则平面

所以,取平面的一个法向量,则

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的最大值;

2)若函数存在两个零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB为圆O的直径,点EF在圆O上,AB//EF,矩形ABCD所在平面和圆O所在平面垂直,且.则( )

A.DF//平面BCE

B.异面直线BFDC所成的角为30°

C.EFC为直角三角形

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为的正方体中,分别为棱的中点.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O,则下列说法中正确的是( )

A.函数是圆O的一个太极函数

B.O的所有非常数函数的太极函数都不能为偶函数

C.函数是圆O的一个太极函数

D.函数的图象关于原点对称是为圆O的太极函数的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数恰有两个极值点,则实数的取值范围是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为坐标原点O,对称轴为轴,其准线为.

1)求抛物线C的方程;

2)设直线,对任意的抛物线C上都存在四个点到直线l的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在疫情这一特殊时期,教育行政部门部署了停课不停学的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:

(Ⅰ)将频率视为概率,求学习时长不超过1小时但考试成绩超过120分的概率;

(Ⅱ)是否有的把握认为高三学生的这次摸底考试数学成绩与其在线学习时长有关”.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

同步练习册答案