精英家教网 > 高中数学 > 题目详情
12.函数f(x)=2-x+1-x的零点所在区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 判断函数的单调性以及函数的连续性,利用零点判定定理推出结果即可.

解答 解:函数f(x)=2-x+1-x是单调减函数,也连续函数,
因为f(1)=2-1+1-1=$\frac{1}{2}>0$,f(2)=2-2+1-2=$-\frac{3}{4}$<0,可得f(1)f(2)<0,
所以函数的零点所在区间为(1,2).
故选:C.

点评 本题考查函数的零点判定定理的应用,注意函数的单调性的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=x|x-a|在[2,+∞)上单调递增,则实数a的取值范围为(  )
A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线的顶点在原点,焦点F在x轴上,且过点(4,4).
(Ⅰ)求抛物线的标准方程和焦点坐标;
(Ⅱ)设点P是抛物线上一动点,M点是PF的中点,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,cosA=$\frac{3}{5}$,且sinB=$\frac{12}{13}$,则cosC=(  )
A.-$\frac{33}{65}$B.$\frac{33}{65}$C.$\frac{63}{65}$D.$\frac{63}{65}$或$\frac{33}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)最大值为2,周期为π.
(1)求实数A,ω的值;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.f(x)的一个对称中心为$(\frac{4π}{3},0)$B.f(x)的图象关于直线$x=-\frac{1}{12}π$ 对称
C.f(x)在$[-π,-\frac{π}{2}]$上是增函数D.f(x)的周期为$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,-3).
(1)若$\overrightarrow a+λ\overrightarrow b与\overrightarrow a$垂直,求λ的值;
(2)求向量$\vec a$在$\vec b$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{xln\frac{1}{|x|}}{|x|}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.三个数a=0.65,b=50.6,c=log0.65,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案