精英家教网 > 高中数学 > 题目详情
(2012•东城区模拟)已知函数:f(x)=x-(a+1)lnx-
a
x
(a∈R)
g(x)=
1
2
x2+ex-xex

(1)当x∈[1,e]时,求f(x)的最小值;
(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范围.
分析:(1)求出f(x)的定义域,求导数f′(x),得其极值点,按照极值点a在[1,e]的左侧、内部、右侧三种情况进行讨论,可得其最小值;
(2)存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,由(1)知f(x)在[e,e2]上递增,可得f(x)min,利用导数可判断g(x)在[-2,0]上的单调性,可得g(x)min,由 f(x)min<g(x)min,可求得a的范围;
解答:解:(1)f(x)的定义域为(0,+∞),f(x)=
(x-1)(x-a)
x2
(a∈R)

当a≤1时,x∈[1,e],f′(x)≥0,f(x)为增函数,
所以f(x)min=f(1)=1-a;
当1<a<e时,x∈[1,a],f′(x)≤0,f(x)为减函数,x∈[a,e],f′(x)≥0,f(x)为增函数,
所以f(x)min=f(a)=a-(a+1)lna-1;
当a≥e时,x∈[1,e],f′(x)≤0,f(x)为减函数,
所以f(x)min=f(e)=e-(a+1)-
a
e

综上,当a≤1时,f(x)min=1-a;当1<a<e时,f(x)min=a-(a+1)lna-1;当a≥e时,f(x)min=e-(a+1)-
a
e

(2)存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min
当a<1时,由(1)可知,x∈[e,e2],f(x)为增函数,
f(x1)min=f(e)=e-(a+1)-
a
e

g′(x)=x+ex-xex-ex=x(1-ex),
当x∈[-2,0]时g′(x)≤0,g(x)为减函数,g(x)min=g(0)=1,
e-(a+1)-
a
e
<1
a>
e2-2e
e+1

a∈(
e2-2e
e+1
,1)
点评:本题考查利用导数研究函数的单调性、求闭区间上函数的最值,考查分类讨论思想,考查学生分析解决问题的能力,恒成立问题往往转化为函数的最值加以解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知sin(45°-α)=
2
10
,且0°<α<90°,则cosα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:An=
F(n,2)
F(2,n)
(n∈N+),若对任意正整数n,都有an≥ak(k∈N*成立,则ak的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1处的切线方程;
(Ⅱ)若f(x)在R上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=x
1
2
,给出下列命题:
①若x>1,则f(x)>1;
②若0<x1<x2,则f(x2)-f(x1)>x2-x1
③若0<x1<x2,则x2f(x1)<x1f(x2);
④若0<x1<x2,则
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正确命题的序号是
①④
①④

查看答案和解析>>

同步练习册答案