精英家教网 > 高中数学 > 题目详情

【题目】已知f(α)=

(1)化简f(α);

(2)α是第三象限角,cos(α)=,求f(α);

(3)α=-1860°,求f(α).

【答案】(1)-cosα(2)(3)

【解析】

(1)利用诱导公式化简即可得到结果;(2)由α是第二象限角及sinα的值,利用同角三角函数间的基本关系求出cosα的值,所求式子利用诱导公式化简后,代入计算即可;(3)将α的度数代入f(α)中利用诱导公式计算即可.

解:(1)f(α)==-cosα

(2)cos(α)=cos(α)=,∴sinα=-.

又∵α是第三象限角,∴cosα=-.∴f(α)=-cosα

(3)α=-1860°时,f(α)=-cosα=-cos(-1860°)=-cos1860°=-cos(5×360°+60°)=-cos60°=-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左、右焦点分别为 ,其离心率为 ,短轴端点与焦点构成四边形的面积为 .

(1)求椭圆 的方程;

(2)若过点 的直线 与椭圆 交于不同的两点 为坐标原点,当 时,试求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数恰有两个不相同的零点,求实数的值;

(2)记为函数的所有零点之和,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上减函数;

(2) 若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)若一个函数定义域的奇函数,当时,,则当x<0时,其中正确的是____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A﹣BCD中,AB、AC、AD两两垂直且长度均为10,定长为 的线段MN的一个端点M在棱AB上运动,另一个端点N在△ACD内运动(含边界),线段MN的中点P的轨迹的面积为2π,则m的值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求证:AB1⊥CC1
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中有高一新生500名,分成水平相同的两类教学实验,为对比教学效果,现用分层抽样的方法从两类学生中分别抽取了40人,60人进行测试

1)求该学校高一新生两类学生各多少人?

2)经过测试,得到以下三个数据图表:

175分以上两类参加测试学生成绩的茎叶图

2100名测试学生成绩的频率分布直方图

下图表格:100名学生成绩分布表:

先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;

该学校拟定从参加考试的79分以上(含79分)的类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣4|,g(x)=|2x+1|.

(1)解不等式f(x)<g(x);

(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案