精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)若a=1,求证:当x>0时,f(x)<0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:(1+
1
2
)(1+
1
4
)…(1+
1
2n
)<e.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)利用导数判定函数的单调性,可得f(x)在(0,+∞)上单调递减,故f(x)<f(0)=0;
(Ⅱ)f′(x)=
1
x+1
-a=
(1-a)-ax
x+1
,分a≥0和a<0,讨论可得函数的单调区间;
(Ⅲ)要证:(1+
1
2
)(1+
1
4
)…(1+
1
2n
)<e,两边取以e为底的对数,即只需证明ln(1+
1
2
)+ln(1+
1
4
)+…+ln(1+
1
2n
)<1,
由(Ⅰ)可知,ln(x+1)<x(x>0),分别取x=
1
2
1
4
,…,
1
2n
,即可得出结论成立.
解答: (Ⅰ)证明:∵a=1,∴f(x)=ln(x+1)-x,
∴f′(x)=
1
x+1
-1=
-x
x+1

∴当x>0时,f′(x)<0,f(x)在(0,+∞)上单调递减,
∴f(x)<f(0)=0.
(Ⅱ)解:∵f(x)=ln(x+1)-ax,∴f(x)的定义域为(-1,+∞),
∴f′(x)=
1
x+1
-a=
(1-a)-ax
x+1

∴①当a≤0时,f′(x)≥0,f(x)在(-1,+∞)单调递增;
②当a>0时,x∈(-1,-1+
1
a
)上,f′(x)>0,x∈(-1+
1
a
,+∞),f′(x)<0,
∴f(x)在(-1,-1+
1
a
)单调递增,在(-1+
1
a
,+∞)单调递减,
(Ⅲ)证明:要证:(1+
1
2
)(1+
1
4
)…(1+
1
2n
)<e,两边取以e为底的对数,即只需证明
ln(1+
1
2
)+ln(1+
1
4
)+…+ln(1+
1
2n
)<1,
由(Ⅰ)可知,ln(x+1)<x(x>0),分别取x=
1
2
1
4
,…,
1
2n
,得到
ln(1+
1
2
1
2
,ln(1+
1
4
)<
1
4
,…,ln(1+
1
2n
)<
1
2n

将上述n个不等式相加,得
ln(1+
1
2
)+ln(1+
1
4
)+…+ln(1+
1
2n
)<
1
2
+
1
4
+…+
1
2n
=1-
1
2n
<1.
从而结论成立.
点评:本题主要考查利用导数研究函数的单调性求函数的单调区间及函数最值等知识,考查学生等价转化思想及分类讨论思想的运用能力,综合性、逻辑性强,属于难题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知梯形ABCD的对角线AC和BD相交于P点,OP的延长线交BC于G,两腰BA,CD的延长线交于O点,EF∥BC且EF过P点.证明:
(1)EP=PF;
(2)OG平分AD和BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx-4在区间[-2,1]上的两个端点处取得最大值和最小值.
(1)求实数m的所有取值组成的集合A;
(2)试写出f(x)在区间[-2,1]上的最大值g(m);
(3)设h(x)=-
1
2
x2+
1
2
x+7,令F(m)=
g(m),m∈A
h(m),m∈B
,其中B=∁RA,若关于m的方程F(m)=a恰有两个不相等的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一家宾馆装修时需安装两种大小不同的门窗玻璃,大号玻璃需260块,小号玻璃需720块,已知商店出售的甲、乙两种型号玻璃,它们每张可同时裁出大小号的玻璃块数如表:
型号大号玻璃小号玻璃
甲型618
乙型49
其中甲型玻璃每张400元,乙型玻璃每张220元,问:甲、乙两种型号的玻璃分别买多少张才最省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1-
1
4n
,求证:f(1)f(2)f(3)…f(n)>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求使下列函数得最大值、最小值的自变量x的集合,并分别写出最大值、最小值是什么.
(1)y=1-
1
2
cos
π
3
x,x∈R;
(2)y=3sin(2x+
π
4
),x∈R;
(3)y=-
3
2
cos(
1
2
x
-
π
6
),x∈R;
(4)y=
1
2
sin(
1
2
x+
π
3
),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lgM+lgN=2lg(M-2N),求log
2
M
N
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为⊙O的直径,C为⊙O上一点,AD⊥平面ABC,AE⊥BD于E,AF⊥CD于F.求证:
(1)平面BCD⊥平面ACD;
(2)BD⊥平面AFE.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知1和-1是函数f(x)=x3+ax2+bx的两个极值点,
(1)求实数a和b的值;  
(2)求f(x)在[0,2)的最大值.

查看答案和解析>>

同步练习册答案