精英家教网 > 高中数学 > 题目详情
精英家教网如图,DA,CB,DC与以AB为直径的半圆分别相切于点A、B、E,且BC:AD=1:2,CD=3cm,则四边形ABCD的面积等于
 
分析:根据三条线段与圆相切,知道从圆外一点做圆的切线,切线长相等,再根据两者的比值,得到两条切线的长度,根据勾股定理做出圆的直径,根据梯形的面积公式得到结果.
解答:解:∵DA,CB,DC与以AB为直径的半圆分别相切于点A、B、E
∴DA=DE,CB=CE
∵BC:AD=1:2,CD=3cm
∴BC=1,AD=2,
∴圆的直径是
9-1
=2
2

∴四边形的面积是
(1+2)×2
2
2
=3
2

故答案为:3
2
点评:本题考查圆的切线的性质定理的证明,本题是一个典型的平面几何的求面积的题目,主要依据是圆的切线长之间的关系,运算量不大,是一个得分题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图(1)直线l∥AB,且与CA,CB分别相交于点E,F,EF与AB间的距离是d,点P是线段EF上任意一点,Q是线段AB上任意一点,则|PQ|的最小值等于d.类比上述结论我们可以得到:在图(2)中,平面α∥平面ABC,且与DA,DB,DC分别相交于点E,F,G,平面α与平面ABC间的距离是m,
a,b分别是平面α与平面ABC内的任意一条直线,则a,b间距离的最小值是m.
或P,Q分别是平面α与平面ABC内的任意一点,则P,Q间距离的最小值是m.
a,b分别是平面α与平面ABC内的任意一条直线,则a,b间距离的最小值是m.
或P,Q分别是平面α与平面ABC内的任意一点,则P,Q间距离的最小值是m.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则P-ABCD体积的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,甲站在水库底面上的点D处,乙站在水坝斜面上的点C处,已知测得从D、C到库底与水坝的交线的距离分别为DA=10
2
米、CB=10米,AB的长为10米,CD的长为10
6
米,则库底与水坝所成的二面角的大小为
135
135
 度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB面积的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

同步练习册答案