精英家教网 > 高中数学 > 题目详情

已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.

解:设扇形的半径为R,弧长为L,则C=2R+L,化为R=
故扇形的面积S=RL=-L2+CL
可知当L=,时,扇形的面积S有最大值为
当扇形的弧长为时,它有最大面积,面积的最大值为
故答案为:
分析:设扇形的半径为R,弧长为L,利用C=2R+L,化为R=,扇形的面积S=RL=-L2+CL,然后求出最大值.
点评:本题是基础题,考查扇形的弧长公式,面积公式,二次函数的最大值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一扇形的周长为c(c>0),当扇形的中心角为多大时,它有最大面积?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源:2015届广西大学附属中学高一上学期期末考试数学试卷(解析版) 题型:解答题

已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.(扇形面积S=Rl,其中R为扇形半径,l为弧长)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西大学附属中学高一(上)期末数学试卷(解析版) 题型:解答题

已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.

查看答案和解析>>

同步练习册答案