精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C,点P01.

(1)过P点作斜率为kk0)的直线交椭圆CA点,求弦长|PA|(用k表示);

(2)过点P作两条互相垂直的直线PAPB,分别与椭圆交于AB两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?

【答案】(1);(2)直线AB过定点.

【解析】

1)先由题意得到直线PA的方程,联立直线与椭圆,得到A点坐标,再由弦长公式,即可求出结果;

2)先由题意,得到,直线的斜率必存在,设直线,联立直线与椭圆方程,根据韦达定理,得到,再由,结合题意,求出,进而可得出结果。

解:(1)把代入得:

所以

(2)由题意可以,直线的斜率必存在,设直线,有

,

所以,即直线AB过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数fx),若存在x0R,使fx0=x0,则称x0fx)的一个不动点,已知fx=x2+ax+4[13]恒有两个不同的不动点,则实数a的取值范围______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,斜率为的直线交抛物线两点,当直线过点时,以为直径的圆与直线相切.

(1)求抛物线的方程;

(2)与平行的直线交抛物线于两点,若平行线之间的距离为,且的面积是面积的倍,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,,侧棱底面的中点.

(1)求证:平面

(2)设点在线段上,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意,给出下列命题:

①“”是“”的充要条件;

②“是无理数”是“是无理数”的充要条件;

③“”是“”的必要条件,

④“”是“”的充分条件.

其中真命题的个数为().

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

1)当时,求的单调区间;

2)设点是函数图象的不同两点,其中,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的值为( )

A. 2 B. C. D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为连续10天,每天新增疑似病例不超过7.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是(

甲地:中位数为2,极差为5 乙地:总体平均数为2,众数为2

丙地:总体平均数为1,总体方差大于0 丁地:总体平均数为2,总体方差为3

A.甲地B.乙地C.丙地D.丁地

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )

A. 月跑步平均里程的中位数为6月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳

查看答案和解析>>

同步练习册答案