精英家教网 > 高中数学 > 题目详情
(2012•南京二模)设向量
a
=(2,sinθ),
b
=(1,cosθ),θ为锐角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.
分析:(1)根据向量数量积的坐标公式列式并化简,得sinθcosθ=
1
6
.再由同角三角函数的平方关系,可得(sinθ+cosθ)2的值,结合θ为锐角,开方即得sinθ+cosθ的值;
(2)根据两个向量平行的充要条件列式,化简得tanθ=2.再由二倍角的正、余弦公式,结合弦化切的运算技巧,算出sin2θ和cos2θ的值,最后根据两角和的正弦公式,可得sin(2θ+
π
3
)的值.
解答:解:(1)∵
a
b
=2+sinθcosθ=
13
6
,∴sinθcosθ=
1
6
.    …(2分)
∴(sinθ+cosθ)2=1+2sinθcosθ=
4
3

又∵θ为锐角,∴sinθ+cosθ=
2
3
3
(舍负).               …(5分)
(2)∵
a
b

∴2×cosθ=sinθ×1,可得tanθ=2.               …(7分)
∴sin2θ=2sinθcosθ=
2sinθcosθ
sin2θ+cos2θ
=
2tanθ
tan2θ+1
=
4
5

cos2θ=cos2θ-sin2θ=
cos2θ-sin2θ
sin2θ+cos2θ
=
1-tan2θ
tan2θ+1
=-
3
5
.…(11分)
所以sin(2θ+
π
3
)=
1
2
sin2θ+
3
2
cos2θ=
1
2
×
4
5
+
3
2
×(-
3
5
 )=
4-3
3
10
.          …(14分)
点评:本题以平面向量数量积运算为载体,考查了同角三角函数的基本关系、二倍角的正余弦公式和两角和的正弦公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•南京二模)下列四个命题
①“?x∈R,x2-x+1≤1”的否定;
②“若x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“A>30°“sinA>
12
”的充分不必要条件;
④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈z)”.
其中真命题的序号是
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)已知
a+3ii
=b-i
,其中a,b∈R,i为虚数单位,则a+b=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)在面积为2的△ABC中,E,F分别是AB,AC的中点,点P在直线EF上,则
PC
PB
+
BC
2
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点p为顶点,加工成一个如图所示的正四棱锥形容器.当x=6cm时,该容器的容积为
48
48
cm3

查看答案和解析>>

同步练习册答案