已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线:与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,,四边形面积S的求最大值.
(I);(II).
解析试题分析:(I)设出椭圆的方程,根据已知条件列方程组,求出和的值,然后写出椭圆的标准方程;(II)根据动直线与椭圆的交点个数,联立方程组求的关系式,再由点到直线的距离公式求得和的代数式,因为四边形是直角梯形,根据边的关系求得高的代数式,由梯形的面积公式表示出面积,利用等量代换,化简的解析式,由函数的单调性与导数的关系判断函数的单调性,根据单调性求最值.
试题解析:(I)设椭圆的方程为,
由已知可得 , 3分
解得,,
∴椭圆的方程为. 5分
(II)由,得 6分
由直线与椭圆仅有一个公共点知,,
化简得. 7分
由点到直线的距离公式,可设
, 8分
∵,
,
∴.
∴四边形面积. 10分
令,,,
当时,,∴在上为减函数,
∴,∴当时,
所以四边形的面积的最大值为. 12分
考点:1、椭圆的定义及标准方程;2、点到直线的距离公式;3、梯形的面积公式;4、利用导数研究函数的单调性;5、利用导数求函数的最值.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为。若,求直线的倾斜角。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线,与交于两点,与交于点,且, 求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为()的直线与椭圆相交于两点,直线、分别交直线 于、两点,线段的中点为.记直线的斜率为,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:,
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆相切的直线与的另一交点为,且的面积为,求椭圆的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆与轴相切,求圆被直线截得的线段长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com