如图,已知椭圆的离心率是,分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点是轴上位于右侧的一点,且满足.
(1)求椭圆的方程以及点的坐标;
(2)过点作轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.
(1);(2)定点坐标为,证明见详解.
【解析】
试题分析:(1)设,然后利用建立关于的方程,然后利用得到的方程,两方程结合消去可得到的关系,再由条件中的离心率得到的关系,进行通过解方程组可求得的值,进行可求得椭圆的方程,以及点的坐标;(2)设.将直线代入椭圆方程消去的得到的二次方程,利用韦达定理可利用表示点的坐标.又设以线段为直径的圆上任意一点,然后利用可求得圆的方程,再令,取时满足上式,故过定点.
试题解析:(1),设,
由有,
又,,
于是,
又,,
又,,椭圆,且.
(2),设,由
,
由于(*),
而由韦达定理:,
,,
设以线段为直径的圆上任意一点,
由有
,
由对称性知定点在轴上,令,取时满足上式,故过定点.
考点:1、椭圆方程及几何性质;2、直线与椭圆的位置关系;3、圆的方程;4、证明定点问题.
科目:高中数学 来源:2016届吉林省吉林市高一上期末检测数学卷(解析版) 题型:选择题
如图,长方体中,,点分别是的中点,则异面直线与所成的角是 ( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中数学 来源:2015届重庆市高二上学期期末考试理科数学试卷(解析版) 题型:填空题
已知抛物线的焦点为,顶点为,准线为,过该抛物线上异于顶点的任意一点作于点,以线段为邻边作平行四边形,连接直线交于点,延长交抛物线于另一点.若的面积为,的面积为,则的最大值为____________.
查看答案和解析>>
科目:高中数学 来源:2015届重庆市高二上学期期末考试理科数学试卷(解析版) 题型:选择题
已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2015届辽宁省沈阳市高二质量监测文科数学试卷(解析版) 题型:填空题
在等差数列中,当时,必定是常数数列. 然而在等比数列 中,对某些正整数r、s,当时,可以不是常数列,试写出非常数数列的一个通项公式 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com