精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.

【答案】

【解析】

(1).要求球的表面积的最小值,需求出球的表面积的算式,为此又需求出球的半径,从而根据算式的特点,用函数的单调性或不等式求出最小值.

(2).列出四棱锥的体积的算式,求出体积取得最大值时变量的取值,从而求出二面角的正切值.

(1).设,则.∵平面

,又

平面

则四棱锥可补形成一个长方体,球的球心为的中点,

从而球的表面积为.

(2).四棱锥的体积

,当时,;当时,.

,此时.

,连接

为二面角的平面角.

,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】年俄罗斯索契冬奥会某项目的选拔比赛中,两个代表队进行对抗赛,每队三名队员,队队员是队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得分,负队得分,设队、队最后所得总分分别为.

对阵队员

队队员胜

队队员负

1)求队得分为分的概率;

2)求的分布列;并用统计学的知识说明哪个队实力较强.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某景区内有一半圆形花圃,其直径AB6O是圆心,且OCAB.OC上有一座观赏亭Q,其中∠AQC.计划在上再建一座观赏亭P,记∠POBθ.

1)当θ时,求∠OPQ的大小;

2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,求游客在观赏亭P处的观赏效果最佳时,角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市201041—430日对空气污染指数的监测数据如(主要污染物为可吸入颗粒物):617670568191929175818867101103959177868382826479868575714945

样本频率分布表:

分组

频数

频率

[4151

2

[5161

1

[6171

4

[7181

6

[8191

10

[91101

[101111

2

1 完成频率分布表;

2)作出频率分布直方图;

3)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,abc分别是角ABC的对边,且acosC=(2bccosA.

1)若3,求△ABC的面积;

2)若∠B<∠C,求2cos2B+cos2C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是(

A.5G的发展带动今后几年的总经济产出逐年增加

B.设备制造商的经济产出前期增长较快,后期放缓

C.设备制造商在各年的总经济产出中一直处于领先地位

D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD为BC边上的中线,cos B=,AD=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线T的焦点为F,准线为l,过F的直线mT交于AB两点,CD分别为ABl上的射影,MAB的中点,若ml不平行,则△CMD(  )

A. 等腰三角形且为锐角三角形

B. 等腰三角形且为钝角三角形

C. 等腰直角三角形

D. 非等腰的直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生态农场有一矩形地块,地块内有一半圆形池塘(如图所示),其中百米,百米,半圆形池塘的半径为1百米,圆心与线段的中点重合,半圆与的左侧交点为.该农场计划分别在上各选一点,修建道路,要求与半圆相切.

1)若,求该道路的总长;

2)若为观光道路,修建费用是4万元/百米,为便道,修建费用是1万元/百米,求修建观光道路与便道的总费用的最小值.

查看答案和解析>>

同步练习册答案