精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知圆心在x轴上、半径为2的圆C位于y轴右侧,且与直线x-
3
y+2=0
相切.
(1)求圆C的方程;
(2)在圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
分析:(1)设圆心是(x0,0)(x0>0),由直线x-
3
y+2=0
于圆相切可知,圆心到直线的距离等于半径,利用点到直线的距离公式可求x0,进而可求圆C的方程
(2)把点M(m,n)代入圆的方程可得,m,n的方程,结合原点到直线l:mx+ny=1的距离h<1可求m的范围,根据弦长公式求出AB,代入三角形的面积公式,结合二次函数的性质可求最大值
解答:解:(1)设圆心是(x0,0)(x0>0),它到直线x-
3
y+2=0
的距离是d=
|x0+2|
1+3
=2

解得x0=2或x0=-6(舍去)…(3分)
∴所求圆C的方程是(x-2)2+y2=4…(4分)
(2)∵点M(m,n)在圆C上
∴(m-2)2+n2=4,n2=4-(m-2)2=4m-m2且0≤m≤4…(6分)
又∵原点到直线l:mx+ny=1的距离h=
1
m2+n2
=
1
4m
<1
…(8分)
解得
1
4
<m≤4
…(10分)
|AB|=2
1-h2

S△OAB=
1
2
|AB|•h=
h2-h4
=
1
4m
-(
1
4m
)
2
=
-(
1
4m
-
1
2
)
2
+
1
4
…(11分)
1
16
1
4m
<1
…(12分)
∴当
1
4m
=
1
2
,即m=
1
2
时取得最大值
1
2

此时点M的坐标是(
1
2
7
2
)
(
1
2
,-
7
2
)
,面积的最大值是
1
2
点评:本题主要考查了直线与圆的位置关系的应用,点到直线的距离公式的应用,直线与圆的相交关系的应用及基本运算的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案