精英家教网 > 高中数学 > 题目详情

已知函数,其中常数满足
(1)若,判断函数的单调性;
(2)若,求时的的取值范围.

(1)Ⅰ当单调递增
Ⅱ当单调递减
(2)时,
时,

解析试题分析: (1)由,说明同号,根据指数函数在底数大于1时为增函数可得的单调性,然后由在相同区间内增函数的和为增函数,减函数的和为减函数可得函数的单调性;
(2)由,说明异号,把代入不等式,整理后由异号,然后分类讨论求解指数不等式即可得到的取值范围.
试题解析:
(1)由,则同号
Ⅰ当,则单调递增
所以,单调递增     2分
Ⅱ当,则单调递减
所以,单调递减                      4分
(2)不等式即是:

                                                8分
因为,则异号
Ⅰ当,则有               10分
Ⅱ当,则有               12分
综上,时,
时,                14分
考点:函数单调性得判断,指数不等式得求解方法,分类讨论应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性,并给出证明;
(3)当a>1时,求使f(x)>0的x的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数
(1)探索函数的单调性,并用单调性定义证明;
(2)是否存在实数使函数为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为,并且满足,且,当时,
(1).求的值;(3分)
(2).判断函数的奇偶性;(3分)
(3).如果,求的取值范围.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

同步练习册答案