精英家教网 > 高中数学 > 题目详情

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况.在30名男性驾驶员中,平均车速超过100额有20人,不超过100 的有10人;在20名女性驾驶员中,平均车速超过100的有5人,不超过100的有15人.

(1)完成下面的列联表:

平均车速超过100

平均车速不超过100

合计

男性驾驶员人数

女性驾驶员人数

合计

(2)判断是否有99.5%的把握认为,平均车速超过100与性别有关.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)见解析;(2)能有超过的把握认为平均车速超过kmh与性别有关.

【解析】分析:()根据题中数据分别得到男性驾驶员中超过kmh和不超过kmh的人数,女性驾驶员超过超过kmh和不超过kmh的人数,从而可完成表;
(2)据题目中的数据,完成列联表,求出,从有的把握认为平均车速超过kmh 与性别有关

详解:(1)

平均车速超过kmh

平均车速不超过kmh

合计

男性驾驶员人数

20

10

30

女性驾驶员人数

5

15

20

合计

25

25

50

(2)

∴ 能有超过的把握认为平均车速超过kmh与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:

工序

加工时间

3

4

2

2

2

1

紧前工序

现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某种书籍的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

为了预测印刷20千册时每册的成本费,建立了两个回归模型:.

(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷20千册时每册的成本费.

附:对于一组数据,其回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数

1)写出该函数的顶点坐标;

2)如果该函数在区间上的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.

(1)若点的坐标为,求椭圆的方程及的值;

(2)若,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=sin+cosx∈R

1)求函数fx)的最小正周期,并求函数fx)在x∈[﹣2π2π]上的单调递增区间;

2)函数fx=sinxx∈R)的图象经过怎样的平移和伸缩变换可以得到函数fx)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.为椭圆的右焦点, 为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.

(1)求椭圆的标准方程;

(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为2的正三角形,平面

(1)求证:平面平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案