精英家教网 > 高中数学 > 题目详情

 已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为俩切点,那么的最小值为

 (A)      (B)   (C)   (D)

 

【答案】

 D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.

【解析1】如图所示:设PA=PB=,∠APO=,则∠APB=,PO=

===,令,则,即,由是实数,所以

,解得.故.此时.

【解析2】法一:  设

法二:换元:

或建系:园的方程为,设

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么
PA
PB
的最小值为(  )
A、-4+
2
B、-3+
2
C、-4+2
2
D、-3+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么
PA
PB
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,求
PA
PB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为两切点,则
PA
PB
取得最小值时的OP的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的半径为1,半径OA、OB的夹角为θ(0<θ<π),θ为常数,点C为圆O上的动点,若
OC
=x
OA
+y
OB
(x,y∈R)
,则x+y的最大值为
1
cos
θ
2
1
cos
θ
2

查看答案和解析>>

同步练习册答案