分析 用换元法,设t=2x,求出t的取值范围,再把函数f(x)化为f(t),求f(t)的值域即可.
解答 解:∵4x-5×2x+6≤0,
∴(2x)2-5×2x+6≤0,
设t=2x,则原不等式化为t2-5t+6≤0,
解得2≤t≤3;
又函数f(x)=2x-2-x=2x-$\frac{1}{{2}^{x}}$,
∴f(t)=t-$\frac{1}{t}$(t∈[2,3]),
∴f′(t)=1+$\frac{1}{{t}^{2}}$>0,
∴f(t)在t∈[2,3]上是增函数,
∴f(2)≤f(t)≤f(3),
即$\frac{3}{2}$≤f(t)≤$\frac{8}{3}$;
∴f(x)的值域是[$\frac{3}{2}$,$\frac{8}{3}$].
故答案为:[$\frac{3}{2}$,$\frac{8}{3}$].
点评 本题考查了不等式的解法和应用问题,也考查了求函数值域的应用问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | $(0,\frac{1}{9})∪(9,+∞)$ | C. | $(0,\frac{1}{9})∪(1,9)$ | D. | $(\frac{1}{9},9)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=$\frac{1}{x}$ | B. | y=($\frac{1}{3}$)x | C. | y=x${\;}^{\frac{1}{2}}$ | D. | y=x2-2x-15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 函数的单调递减区间为(-∞,1),(1,+∞) | B. | 函数的单调递减区间为(-∞,1]∪(1,+∞) | ||
C. | 函数的单调递增区间为(-∞,1),(1,+∞) | D. | 函数的单调递增区间为(-∞,1]∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=$\sqrt{{x}^{2}}$ | B. | y=$\root{3}{|x{|}^{3}}$ | ||
C. | y=lnex | D. | y=a${\;}^{lo{g}_{a}x}$(a>0且a≠1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com