精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的极值点;

2)定义:若函数的图像与直线有公共点,我们称函数有不动点.这里取:,若,如果函数存在不动点,求实数取值范围.

【答案】1)见解析;(2

【解析】

1)求出导函数,对a分类讨论导函数的零点即可得解;

2)将问题转化为有解,求参数的取值范围,构造新函数,利用导函数讨论单调性求解.

1定义域为,由

i)当时,因为

此时递减,递增;

此时,极小值点,无极小值点;

ii)当时,由

此时递增,无极值点;

此时,极大值点,极小值点

此时,极大值点,极小值点

2

存在不动点,∴方程有实数根,即有解,

,得

时,单调递减;当时,单调递增,

时,有不动点,的范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设函数,讨论的极值点个数,并求出相应极值;

2)若,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:ab0)过点E1),其左、右顶点分别为AB,左、右焦点为F1F2,其中F10).

1)求椭圆C的方程:

2)设Mx0y0)为椭圆C上异于AB两点的任意一点,MNAB于点N,直线lx0x+2y0y40,设过点Ax轴垂直的直线与直线l交于点P,证明:直线BP经过线段MN的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2若函数有两个零点分别记为

的取值范围;

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,为四边形对角线交点,为棱的中点,且平面.

1)证明:平面

2)证明:四边形为矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

1)求证:平面

2)求证:平面

3)在棱上是否存在一点E,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

1)求证:

2)若的中点,求平面将三棱锥分成的两部分几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面,四边形是正方形,点分别是棱的中点,.

1)求证:

2)求二面角的余弦值;

3)若点在棱上,且,判断平面与平面是否平行,并说明理由.

查看答案和解析>>

同步练习册答案