精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两名篮球运动员,甲投篮一次命中的概率为,乙投篮一次命中的概率为,若甲、乙各投篮三次,设为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.

1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率;

2)求的分布列及数学期望.

【答案】1;(2)分布列见解析,1

【解析】

1)甲获胜的情况为3:1,3:2,2:1分别计算概率即可得解;

2的所有可能取值是0123,分别计算概率,写出分布列,计算数学期望.

1)甲以3:1获胜的概率

甲以3:2获胜的概率

甲以2:1获胜的概率

则甲获胜的概率

2)由题意可得的所有可能取值是0123.

.

的分布列为

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中

若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;

若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若AB=B,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若函数在区间上单调递减,求实数的取值范围;

(2)函数有几个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[e+∞)上的函数fx)满足fx+xlnxf′(x)<0f2018)=0,其中f′(x)是函数的导函数,e是自然对数的底数,则不等式fx)>0的解集为(  )

A. [e2018 B. [2018+∞) C. e+∞) D. [ee+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥平面,且,底面为直角梯形,分别为的中点,平面的交点为.

(1)求的长度;

(2)求截面的底面所成二面角的大小;

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015秋运城期中)已知函数f(x)=(log2x﹣2)(log4x﹣).

(1)当x[1,4]时,求该函数的值域;

(2)若f(x)≤mlog2x对于x[4,16]恒成立,求m得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上的动点,求点到曲线的最小距离.

查看答案和解析>>

同步练习册答案