精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|x-a| .
(1)当 a=2 时,解不等式
(2)若 的解集为[0,2] , ,求证:

【答案】
(1)

【解答】解:当a=2时,不等式为

不等式的解集为


(2)

【解答】

证明: ,解得 ,而 解集是 [0,2] ,

,解得 a=1 ,所以

所以


【解析】本题主要考查了绝对值不等式的解法,解决问题的关键是(1)用零点分段法去掉绝对值符号,转化为不等式组,解不等式;(2)先解不等式 ,再结合 的解集为 ,从而得到a的值,再利用特殊值1将 转化为 ,再利用基本不等式求函数 的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f( )=0,则不等式f( )>0的解集为(
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0,
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+3在x=2时取得最小值,且函数f(x)的图象在x轴上截得的线段长为2.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)﹣mx的一个零点在区间(0,2)上,另一个零点在区间(2,3)上,求实数m的取值范围.
(3)当x∈[t,t+1]时,函数f(x)的最小值为﹣ ,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明“当 n 为正奇数时,xn+yn 能被 x+y 整除”,第二步归纳假
设应该写成( )
A.假设当n=k 时, xk+yk 能被 x+y 整除
B.假设当N=2K 时, xk+yk 能被 x+y 整除
C.假设当N=2K+1 时, xk+yk 能被 x+y 整除
D.假设当 N=2K-1 时, x2k-1+y2k-1 能被 x+y 整除

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)讨论函数在区间上的单调性;

(2)已知,若对任意,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果 那么 xy>0 是 |x+y|=|x|+|y| 成立的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两正数 满足 ,求 的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(﹣x)=0;②对于定义域上的任意x1、x2 , 当x1≠x2时,恒有 <0,则称函数f(x)为“理想函数”.给出下列三个函数中:(1)f(x)= ;(2)f(x)=x+1;(3)f(x)= ,能被称为“理想函数”的有(填相应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当 时,求曲线 在点 处的切线方程;
(2)当 时,判断方程 实根个数.
(3)若 时,不等式 恒成立,求实数 m 的取值范围.

查看答案和解析>>

同步练习册答案