精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PC= AC,平面PAC⊥平面ABCD.

(1)点E在棱PC上,试确定点E的位置,使得PD⊥平面ABE;
(2)求二面角A﹣PD﹣C的余弦值.

【答案】
(1)解:∵ ,∴PA⊥AC,

又∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,

∴PA⊥平面ABCD,可得PA⊥AB,PA⊥AD,又AB⊥AD,

以A为坐标原点,射线AB,AD,AP分别为x,y,z轴的正方向建立空间直角坐标系,

设PA=2,则

,∴PD⊥AB.

若AE⊥PD,则 ,即

即﹣4+λ8=0,得 ,即当E为PC的中点时,AE⊥PD,

则PD⊥平面ABE,

∴当E为PC的中点时PD⊥平面ABE


(2)解:设平面PCD的一个法向量 =(x,y,z),

,令 ,则z=2,x=1,则

再取平面PAD的一个法向量为 =(1,0,0).

则cos< >= =

故二面角A﹣PD﹣C的余弦值为


【解析】由已知可得PA⊥AC,结合面面垂直的性质可得PA⊥AB,PA⊥AD,以A为坐标原点,射线AB,AD,AP分别为x,y,z轴的正方向建立空间直角坐标系,求出所用点的坐标.(1)由数量积为0可得PD⊥AB,设 ,再由 求得λ值,则点E的位置确定;(2)求出平面PCD的一个法向量,取平面PAD的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PD﹣C的余弦值.
【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),其中a为实数.
(Ⅰ)讨论并求出f(x)的极值;
(Ⅱ)在a<1时,是否存在m>1,使得对任意的x∈(1,m)恒有f(x)>0,并说明理由;
(Ⅲ) 确定a的可能取值,使得存在n>1,对任意的x∈(1,n),恒有|f(x)|<(x﹣1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的奇函数f(x)满足f(4﹣x)+f(x)=0,当﹣2<x<0时,f(x)=2x , 则f(log220)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,g(x)=,若函数y=f(g(x))+a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则2g(x1)+g(x2)+g(x3)的取值范围为______

【答案】

【解析】

首先研究函数和函数的性质,然后结合韦达定理和函数的性质求解2gx1)+gx2)+gx3)的取值范围即可.

由题意可知:

将对勾函数的图象向右平移一个单位,再向上平移一个单位即可得到函数的图象,其图象如图所示:

可得

据此可知在区间上单调递增,在区间上单调递减,

绘制函数图象如图所示:

的最大值为

函数yfgx))+a有三个不同的零点,则

,则

整理可得:,由韦达定理有:.

满足题意时,应有:

.

【点睛】

本题主要考查导数研究函数的性质,等价转化的数学思想,复合函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.

型】填空
束】
17

【题目】已知等比数列{}的前n项和为,且满足2+m(m∈R).

(Ⅰ)求数列{}的通项公式;

(Ⅱ)若数列{}满足,求数列{}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A、B、C的对边分别为a、b、c,且 =1.
(1)求角A;
(2)若a=4 ,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)求关于的线性回归方程;(提示数据:

(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6个人排成一排照相,由于甲乙性格不合,所以要求甲乙不相邻,丙最高,要求丙站在最中间的两个位置中的一个位置上,则不同的站法有( )种.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+(﹣1)n ,其中n∈N* , a为常数.
(Ⅰ)当n=2,且a>0时,判断函数f(x)是否存在极值,若存在,求出极值点;若不存在,说明理由;
(Ⅱ)若a=1,对任意的正整数n,当x≥1时,求证:f(x+1)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.
(1)求函数f(x)的解析式;
(2)求f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案