精英家教网 > 高中数学 > 题目详情
(2008•奉贤区二模)在圆中有结论“经过圆心的任意弦的两端点与圆上任意一点(除这两个端点外)的连线的斜率之积为定值-1”是正确的.通过类比,对于椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,我们有结论“
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P的连线的斜率之积为定值-
b2
a2
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P的连线的斜率之积为定值-
b2
a2
”成立.
分析:类比于已知圆中结论,应考查经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P的连线的斜率之积是何常数,写出类比结论.
解答:解:设经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦AB,且 A(x1,y1),则B(-x1,-y1),P(x0,y0),则kAP•kBP=
y
2
0
-
y
2
1
x
2
0
-
x
2
1

由椭圆方程得y2=b2(1-
x2
a2
),∴①式即为kAP•kBP=
b2(1-
x02
a2
) -b2(1-
x2
a2
 )
x02-x12
=-
b2
a2

故答案为:
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P的连线的斜率之积为定值-
b2
a2
点评:本题考查类比推理,得出类比命题并论证命题的正确性是两方面需要解决的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=cos2x的最小正周期为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知椭圆的标准方程为
x2
4
+
y2
3
=1
,则该椭圆的焦距为
2
2

查看答案和解析>>

同步练习册答案