精英家教网 > 高中数学 > 题目详情
5.已知$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow{b}$=(k,0,1),$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,则k=$\frac{\sqrt{2}}{2}$.

分析 利用向量数量积公式,建立方程,即可求得k的值.

解答 解:$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow{b}$=(k,0,1),
且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,
所以$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$k=$\sqrt{{(\sqrt{3})}^{2}{+(-1)}^{2}{+0}^{2}}$×$\sqrt{{k}^{2}{+0}^{2}{+1}^{2}}$×cos60°,
解得k=$\frac{{\sqrt{2}}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$

点评 本题考查了向量数量积的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.“$\frac{1}{x}<\frac{1}{2}$”是“x>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足$\left\{\begin{array}{l}x+y≥3\\ x-y≤3\\ x+2y≤6\end{array}\right.$,则(x+1)2+y2的最小值为(  )
A.$2\sqrt{2}$B.$\sqrt{10}$C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面函数中在定义域内是奇函数和单调增函数的是(  )
A.y=e-x-exB.y=tanxC.y=x-3|x|D.y=ln(x+2)-ln(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={1,3,5,7},Q={x|2x-1>11},则P∩Q等于(  )
A.{7}B.{5,7}C.{3,5,7}D.{x|6<x≤7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,若$\overrightarrow m=(b,c-a)$,$\overrightarrow n=(sinC+sinA,sinC-sinB)$,且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A;       
(2)若b+c=4,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.中心在原点,焦点坐标为$(±\sqrt{2},0)$的椭圆被直线y=x+1截得的弦中点横坐标为$-\frac{2}{3}$,则椭圆方程为(  )
A.$\frac{x^2}{6}+\frac{y^2}{4}=1$B.$\frac{x^2}{8}+\frac{y^2}{4}=1$C.$\frac{y^2}{4}+\frac{x^2}{2}=1$D.$\frac{x^2}{4}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x24568
y3040605070
回归方程为$\widehat{y}$=bx+a其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(1)根据表中提供的数据,求出y与x的回归方程k;
(2)预测销售额为115万元时,大约需要多少万元广告费.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,则cosα的值为(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案