精英家教网 > 高中数学 > 题目详情

【题目】如图,过抛物线上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点.

(1)求的值;

(2)若,求面积的最大值。

【答案】1y1y24.26

【解析】

(1)因为A(x1y1)B(x2y2)在抛物线Cy24x上,所以ABkPA,同理kPB,依题意有kPA=-kPB,因为=-,所以y1y24

(2)(1)kAB1,设AB的方程为yy1x,即xyy10PAB的距离为dAB·|y1y2|2|2y1|,所以SPAB××2|2y1||4y112||y12||(y12)216|·|y12|,令y12t,由y1y24y1≥0y2≥0,可知-2≤t≤2.SPAB|t316t|,因为SPAB|t316t|为偶函数,只考虑0≤t≤2的情况,记f(t)|t316t|16tt3f′(t)163t2>0,故f(t)[02]是单调增函数,故f(t)的最大值为f(2)24,故SPAB的最大值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面平面分别是的中点.

(1)求证:平面平面

(2)若是线段上一点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列与等比数列满足,且.

(1)求数列的通项公式;

(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.

(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;

(2)已知对讲机有效通话的最大距离是5千米.若乙先到达D,且乙从AD的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调增区间;

(2)若恰有三个不同的零点).

①求实数的取值范围;

②求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期为π,且图象上的一个最低点为M( ).

(1)求f(x)的解析式及单调递增区间;

(2)当x∈[0,]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多边形PABCD中,M是线段PD上的一点,且,若将沿AD折起,得到几何体

证明:平面AMC

,且平面平面ABCD,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把两个全等的正三棱锥的底面粘在一起,在所得的六面体中,所有二面角相等,而顶点可分成两类:在第一类中,每一个顶点发出三条棱;而在第二类顶点中,每一个顶点发出四条棱。试求连结两个第一类顶点的线段长与连结两个第二类顶点的线段长之比。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求证:函数恰有一个负零点;(用图象法证明不给分)

2)若函数恰有三个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案