精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=-x2+4x,x∈[0,1],则f(x)的最大值为3,最小值为0.

分析 求出二次函数的对称轴,判断开口方向,然后求解最值.

解答 解:函数f(x)=-x2+4x,对称轴为:x=2,二次函数的开口向下,x∈[0,1],函数是增函数,
函数的最大值为:f(1)=3.最小值为f(0)=0.
故答案为:3;0.

点评 本题考查二次函数的最值的求法,二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)计算$\frac{2}{3}lg8+lg25-{3^{2{{log}_3}5}}+{16^{\frac{3}{4}}}$的值;
(2)已知a+a-1=5,求a2+a-2和${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.证明:$\frac{1+sin2x}{cos2x}$=tan$(\begin{array}{l}{\frac{π}{4}+x}\end{array})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在三棱锥S-ABC中,P、Q分别是△SAC和△SAB的重心,试判断BC与平面APQ的位置关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.y=$\frac{2}{x}$在区间[2,4]上的最大值、最小值分别是(  )
A.1,$\frac{1}{2}$B.$\frac{1}{2}$,1C.$\frac{1}{2}$,$\frac{1}{4}$D.$\frac{1}{4}$,$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tan($\frac{π}{4}$+α)=2,tan(α-β)=$\frac{1}{2}$,α∈(0,$\frac{π}{4}$),β∈(-$\frac{π}{4}$,0).
(1)求tanα的值;
(2)求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值;
(3)求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的n阶导数:
(1)ln(1+x);
(2)sin2x;
(3)xex
(4)$\frac{1}{\sqrt{1+x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y=x2-2x+4,直线l:y=kx,若l与C有两个不同的交点P、Q,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知B1、B2是椭圆短轴的两个端点,O为椭圆的中心,过左焦点F1作长轴的垂线交椭圆于P,若|OF1|,|F1B2|,|B1B2|成等比数列,则 $\frac{|O{F}_{2}|}{|P{F}_{2}|}$的值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案